已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How is automated and self-driving vehicle technology presented in the news media?

领域 主观性 情绪分析 负效应 领域(数学) 计算机科学 心理学 广告 政治学 社会心理学 业务 人工智能 法学 认识论 数学 纯数学 哲学
作者
Praveena Penmetsa,Sunday Okafor,Emmanuel Kofi Adanu,Matthew Hudnall,Somayeh Bakhtiari Ramezani,Steven Holiday,Steven Jones
出处
期刊:Technology in Society [Elsevier BV]
卷期号:74: 102290-102290 被引量:2
标识
DOI:10.1016/j.techsoc.2023.102290
摘要

The media continues to be a prominent and widely embraced channel for obtaining information on various topics, exerting considerable influence in shaping public opinions. This holds particularly true for the realm of automated vehicles (AVs), as the media consistently covers developments in this field, encompassing both positive aspects such as technological advancements, as well as negative occurrences like incidents involving self-driving cars colliding with pedestrians. The objective of this study was to utilize sentiment analysis techniques to evaluate the portrayal of AV technology in media news coverage. Data was retrieved from Sprinklr using keywords that are often associated with AVs. Over 1.7 million articles were collected on the keywords for relevant articles published between May 1, 2015 to May 24, 2021. Sentiment analysis was carried out on the cleaned data using three different models – VADER, TextBlob, and NRCLex. The sentiment analysis was separately conducted on the title and text of the articles. 2018 recorded the highest number of news articles on the AV technology. The number of negative sentiments in the title of articles published on the web in 2018 increased 12 times compared to the previous year. The negativity induced in 2018 in the news media did not continue in the next year, which explains that the technology experienced short term effects from the negative incidents associated with its early development. The news articles were also found to have subjectivity from the authors in the article text. The findings are expected to stimulate debates among industry players on how to bring the media along the journey of the development and eventual full deployment of AVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助老中医采纳,获得30
1秒前
ming发布了新的文献求助10
6秒前
Li完成签到 ,获得积分10
10秒前
ikea1984发布了新的文献求助30
10秒前
秋霜完成签到 ,获得积分10
14秒前
仙女爷爷完成签到,获得积分10
18秒前
科研通AI2S应助清秀元芹采纳,获得10
20秒前
20秒前
丁元英完成签到,获得积分10
21秒前
kokoko完成签到,获得积分10
23秒前
24秒前
24秒前
28秒前
背后时光发布了新的文献求助10
28秒前
31秒前
33秒前
HHR33应助Brightan采纳,获得10
36秒前
深情安青应助背后时光采纳,获得10
37秒前
Odingers发布了新的文献求助10
37秒前
yoyo完成签到,获得积分10
42秒前
Grayball应助科研通管家采纳,获得10
42秒前
huiya应助科研通管家采纳,获得10
42秒前
Grayball应助科研通管家采纳,获得10
42秒前
Grayball应助科研通管家采纳,获得10
42秒前
Grayball应助科研通管家采纳,获得10
42秒前
43秒前
Grayball应助科研通管家采纳,获得10
43秒前
开心岩应助科研通管家采纳,获得10
43秒前
星辰大海应助科研通管家采纳,获得10
43秒前
Grayball应助科研通管家采纳,获得10
43秒前
824完成签到,获得积分10
43秒前
开心岩应助科研通管家采纳,获得10
43秒前
彭于晏应助科研通管家采纳,获得10
43秒前
43秒前
45秒前
48秒前
Lucas应助CC采纳,获得10
53秒前
54秒前
yeyeye发布了新的文献求助10
54秒前
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962