Deep Progressive Asymmetric Quantization Based on Causal Intervention for Fine-Grained Image Retrieval

计算机科学 判别式 图像检索 人工智能 量化(信号处理) 模式识别(心理学) 散列函数 深度学习 特征提取 计算机视觉 图像(数学) 计算机安全
作者
Lei Ma,Hanyu Hong,Fanman Meng,Qingbo Wu,Jinmeng Wu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1306-1318 被引量:13
标识
DOI:10.1109/tmm.2023.3279990
摘要

In the field of computer vision, fine-grained image retrieval is an extremely challenging task due to the inherently subtle intra-class object variations. In addition, the high-dimensional real-valued features extracted from large-scale fine-grained image datasets slow the retrieval speed and increase the storage cost. To solve above issues, existing fine-grained image retrieval methods mainly focus on finding more discriminative local regions for generating discriminative and compact hash codes, which achieve limited fine-grained image retrieval performance due to the large quantization errors and the confounding granularities and context of discriminative parts, i.e., the correct recognition of fine-grained objects mainly attribute to the discriminative parts and their context. To learn robust causal features and reduce the quantization errors, we propose a deep progressive asymmetric quantization (DPAQ) method based on causal intervention to learn compact and robust descriptions for fine-grained image retrieval task. Specifically, we introduce a structural causal model to learn robust casual features via causal intervention for fine-grained visual recognition. Subsequently, we design a progressive asymmetric quantization layer in the feature embedding space, which can preserve the semantic information and reduce the quantization errors sufficiently. Finally, we incorporate both the fine-grained image classification and retrieval tasks into an end-to-end deep learning architecture for generating robust and compact descriptions. Experimental results on several fine-grained image retrieval datasets demonstrate that the proposed DPAQ method performs the best for fine-grained image retrieval task and surpasses the state-of-the art fine-grained hashing methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snoval完成签到,获得积分10
1秒前
1秒前
2秒前
qhtwld完成签到,获得积分10
2秒前
Snoval发布了新的文献求助10
4秒前
桐桐应助小董继续努力采纳,获得10
4秒前
芝士大王完成签到 ,获得积分10
5秒前
情怀应助待放光的吖啶酯采纳,获得10
5秒前
眼睛大的人雄完成签到 ,获得积分10
6秒前
6秒前
wanglu发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
思源应助一周六次探花郎采纳,获得10
8秒前
CodeCraft应助Dante采纳,获得30
12秒前
Zack发布了新的文献求助10
13秒前
执着牛青完成签到,获得积分10
13秒前
朝朝完成签到,获得积分20
14秒前
15秒前
15秒前
元气蛋完成签到,获得积分10
16秒前
18秒前
一周六次探花郎完成签到,获得积分20
18秒前
1111完成签到,获得积分10
18秒前
wwb完成签到,获得积分10
19秒前
刘肖完成签到,获得积分10
20秒前
共享精神应助cccc1111111采纳,获得10
20秒前
千程发布了新的文献求助30
20秒前
20秒前
1111发布了新的文献求助10
21秒前
如初发布了新的文献求助10
21秒前
YH发布了新的文献求助30
22秒前
24秒前
25秒前
28秒前
火星天发布了新的文献求助10
29秒前
29秒前
29秒前
愉快洋葱完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775692
求助须知:如何正确求助?哪些是违规求助? 3321312
关于积分的说明 10204776
捐赠科研通 3036237
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783