Characterization of ash content in wheat flour using data fusion

高光谱成像 特征(语言学) 均方误差 融合 计算机科学 加权 人工智能 模式识别(心理学) 传感器融合 极限学习机 数学 人工神经网络 统计 物理 哲学 语言学 声学
作者
Jiacong Li,Shanzhe Zhang,Cuiling Liu,Yingqian Yin,Xiaorong Sun,Jingzhu Wu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:133: 104792-104792 被引量:11
标识
DOI:10.1016/j.infrared.2023.104792
摘要

Ash detection played an important role in wheat flour quality testing. In this work, we proposed a method for the ash content detection in wheat flour, which based on hyperspectral (HSI) method fused with terahertz (THz) technology. Standard Normal Variable Correction (SNV) and Multiple Scattering Correction (MSC) were used for the pretreatment of HSI and THz data. Moreover, feature wavelengths were extracted by the Successive Projections Algorithm (SPA) and Feature weighting algorithms (Relieff), respectively. Hierarchical Extreme Learning Machine (H-ELM) model were used for the analysis of two spectral data, which combined with data fusion strategy. The prediction coefficient of determination (r2) and the root mean square error of prediction (RMSEP) were employed to evaluate the performance of the model effectively. Results suggested that the model accuracy of data fusion was better than that of single spectrum model. Compared to other fused method, this model obtained better results at r2 = 0.989 and RMSEP = 0.015, which based on the SPA-selected HSI feature data fused with the Relieff-selected THz feature data. This study demonstrates that data fusion analysis offers a way to detect ash content in wheat flour, which based on HSI method and THz technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白沙完成签到,获得积分10
刚刚
刚刚
Hhhhh发布了新的文献求助10
1秒前
1秒前
Lucas应助sunshine采纳,获得10
1秒前
平常的飞风完成签到,获得积分10
1秒前
wanci应助坦率的世开采纳,获得10
1秒前
2秒前
斯文败类应助沉默的美女采纳,获得10
2秒前
无花果应助pups采纳,获得10
2秒前
晨晨发布了新的文献求助10
2秒前
3秒前
瓜6完成签到,获得积分10
4秒前
4秒前
威武雪兰完成签到,获得积分10
4秒前
星辰大海应助11采纳,获得10
4秒前
令狐发布了新的文献求助10
4秒前
lpk发布了新的文献求助10
4秒前
依米医意发布了新的文献求助10
5秒前
5秒前
ZZY发布了新的文献求助10
5秒前
一灯大师发布了新的文献求助10
5秒前
yunyun发布了新的文献求助10
5秒前
ZeKaWa应助FLZLC采纳,获得10
6秒前
所所应助李乐乐乐乐采纳,获得10
6秒前
Hhhhh完成签到,获得积分10
6秒前
嗯嗯哈哈完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助20
7秒前
7秒前
7秒前
杨雨馨发布了新的文献求助10
8秒前
王莹发布了新的文献求助10
8秒前
852应助lll采纳,获得10
9秒前
clark完成签到,获得积分10
9秒前
9秒前
9秒前
赘婿应助晨晨采纳,获得10
9秒前
9秒前
Hello应助Chang采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401