QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研小白发布了新的文献求助10
1秒前
香蕉觅云应助泷生采纳,获得10
2秒前
果果完成签到,获得积分20
4秒前
华仔应助一起去看海采纳,获得10
5秒前
乐乐应助郭子仪采纳,获得10
5秒前
HAOHAO发布了新的文献求助10
6秒前
隐形的雁完成签到,获得积分10
9秒前
只与你完成签到 ,获得积分10
10秒前
11秒前
传奇3应助怡然的扬采纳,获得10
12秒前
12秒前
一起去看海完成签到,获得积分20
12秒前
12秒前
ccm应助清脆琳采纳,获得10
12秒前
NexusExplorer应助果果采纳,获得10
13秒前
16秒前
xmhxpz发布了新的文献求助10
17秒前
DSFSD完成签到,获得积分10
20秒前
20秒前
进口小宵完成签到,获得积分10
22秒前
优秀藏鸟完成签到 ,获得积分10
24秒前
25秒前
泷生发布了新的文献求助10
25秒前
25秒前
26秒前
不配.应助MADAO采纳,获得200
26秒前
27秒前
三月完成签到,获得积分20
28秒前
cizzz发布了新的文献求助10
31秒前
果果发布了新的文献求助10
32秒前
32秒前
32秒前
Criminology34应助nadeem采纳,获得10
34秒前
英俊的铭应助Tom47采纳,获得10
34秒前
36秒前
王小茗发布了新的文献求助10
37秒前
暗中讨饭完成签到,获得积分10
38秒前
Vincent发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432