QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿呆完成签到,获得积分10
3秒前
tty完成签到 ,获得积分10
4秒前
OHHO发布了新的文献求助10
5秒前
Creshiki发布了新的文献求助10
5秒前
皮皮应助LINYA采纳,获得30
7秒前
思妍完成签到,获得积分10
7秒前
光伏吴彦祖完成签到,获得积分10
9秒前
10秒前
11秒前
坦率完成签到,获得积分10
11秒前
12秒前
13秒前
科研通AI2S应助史萌采纳,获得10
13秒前
Creshiki完成签到,获得积分10
13秒前
13秒前
14秒前
单薄的绮兰完成签到 ,获得积分10
15秒前
秀丽绿真完成签到,获得积分10
17秒前
WN发布了新的文献求助10
17秒前
Wind应助diandian采纳,获得10
18秒前
youniverse完成签到 ,获得积分10
18秒前
19秒前
道明嗣发布了新的文献求助10
19秒前
Jasper应助辛勤哈密瓜采纳,获得30
19秒前
liulium发布了新的文献求助10
20秒前
现代寒云完成签到 ,获得积分10
21秒前
24秒前
28秒前
cooper发布了新的文献求助10
28秒前
OHHO完成签到,获得积分10
29秒前
我是老大应助安静皮带采纳,获得10
29秒前
29秒前
张浩强完成签到,获得积分10
30秒前
健康的夜南完成签到,获得积分10
31秒前
科研通AI2S应助yourkit采纳,获得10
32秒前
tian发布了新的文献求助30
33秒前
34秒前
Ava应助Zhao采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989