QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七里香完成签到 ,获得积分10
刚刚
handsomecat关注了科研通微信公众号
刚刚
细心映寒完成签到 ,获得积分10
刚刚
刚刚
fff完成签到,获得积分10
刚刚
领导范儿应助MJQ采纳,获得100
刚刚
1秒前
Owen应助世界尽头采纳,获得10
1秒前
echolan发布了新的文献求助10
2秒前
SID完成签到,获得积分10
2秒前
中九完成签到 ,获得积分10
2秒前
Rrr完成签到,获得积分10
2秒前
hehuan0520完成签到,获得积分10
2秒前
2秒前
打打应助chinning采纳,获得10
2秒前
桐桐应助wangyanyan采纳,获得10
3秒前
3秒前
zzznznnn发布了新的文献求助10
3秒前
jogrgr发布了新的文献求助10
4秒前
sun发布了新的文献求助10
4秒前
布鲁鲁发布了新的文献求助10
4秒前
自信晟睿完成签到,获得积分10
4秒前
酷波er应助哒哒采纳,获得10
5秒前
5秒前
沉默乐荷完成签到,获得积分10
5秒前
rstorz应助皮尤尤采纳,获得10
5秒前
sweetbearm应助小离采纳,获得10
5秒前
何青岚关注了科研通微信公众号
6秒前
doudou完成签到,获得积分20
6秒前
李健的小迷弟应助潦草采纳,获得10
6秒前
7秒前
7秒前
7秒前
柒八染完成签到,获得积分10
7秒前
wsljc134完成签到,获得积分20
7秒前
8秒前
善良香岚完成签到,获得积分20
8秒前
8秒前
8秒前
123发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759