QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜靖仇发布了新的文献求助10
刚刚
自信书文发布了新的文献求助10
1秒前
尹文发布了新的文献求助10
1秒前
谢大喵发布了新的文献求助10
1秒前
2秒前
赵志浩发布了新的文献求助10
2秒前
li完成签到,获得积分10
2秒前
所所应助快乐小天使采纳,获得10
2秒前
宋晓静发布了新的文献求助10
2秒前
起风了1995完成签到,获得积分10
3秒前
Jason-1024完成签到,获得积分10
3秒前
贪吃发布了新的文献求助10
3秒前
4秒前
4秒前
小二郎应助DreamerOj采纳,获得30
4秒前
4秒前
南山完成签到,获得积分10
4秒前
小王同学发布了新的文献求助10
4秒前
li完成签到,获得积分10
5秒前
5秒前
5秒前
li发布了新的文献求助10
5秒前
是真名士自风刘女士完成签到,获得积分10
6秒前
娜美完成签到,获得积分10
6秒前
6秒前
Wjt完成签到,获得积分10
6秒前
6秒前
烟花应助粗暴的坤采纳,获得10
6秒前
尹文完成签到,获得积分20
7秒前
喜悦的唇膏完成签到,获得积分10
7秒前
7秒前
hym完成签到,获得积分10
7秒前
科研通AI6应助蛋黄酥酥采纳,获得10
7秒前
8秒前
8秒前
JamesPei应助轻松豁采纳,获得10
9秒前
9秒前
9秒前
虚幻白玉发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803