QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哈哈哈哈哈完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
独行者完成签到,获得积分10
5秒前
刘家骏发布了新的文献求助10
6秒前
林一发布了新的文献求助20
7秒前
zxvcbnm完成签到,获得积分10
7秒前
晨星完成签到,获得积分10
8秒前
8秒前
顾越发布了新的文献求助10
8秒前
懵懂的尔风完成签到 ,获得积分10
10秒前
ding应助guard采纳,获得150
10秒前
11秒前
Joanne完成签到 ,获得积分10
12秒前
浮游应助瘦瘦的雨莲采纳,获得10
12秒前
13秒前
13秒前
蛙蛙完成签到 ,获得积分10
14秒前
luowenbo发布了新的文献求助10
16秒前
活力完成签到,获得积分10
17秒前
悦耳的谷芹完成签到 ,获得积分10
17秒前
18秒前
ilmiss完成签到,获得积分10
18秒前
llw发布了新的文献求助10
19秒前
YFL完成签到,获得积分10
19秒前
19秒前
kk_yang完成签到,获得积分10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
22秒前
wwz应助科研通管家采纳,获得10
22秒前
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074