QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier BV]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
上官若男应助斜玉采纳,获得30
刚刚
廿廿廿完成签到,获得积分10
1秒前
3秒前
3秒前
FashionBoy应助苹果蜗牛采纳,获得10
4秒前
Zzzzz发布了新的文献求助10
4秒前
小白完成签到,获得积分10
4秒前
苏silence发布了新的文献求助10
5秒前
muzi完成签到,获得积分10
5秒前
阿巴阿哲关注了科研通微信公众号
6秒前
6秒前
嘻嘻哈哈完成签到,获得积分10
6秒前
LM完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助100
6秒前
zlsuen发布了新的文献求助10
7秒前
LI完成签到,获得积分10
7秒前
my123完成签到,获得积分10
7秒前
科研丁完成签到,获得积分10
8秒前
林夏发布了新的文献求助10
8秒前
8秒前
大海123完成签到,获得积分10
9秒前
9秒前
9秒前
冷酷严青发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
ZIS完成签到,获得积分10
11秒前
单薄谷秋完成签到,获得积分10
11秒前
超帅问枫完成签到,获得积分10
11秒前
11秒前
Hindiii完成签到,获得积分10
11秒前
Mr_Lv发布了新的文献求助10
11秒前
12秒前
ryen发布了新的文献求助10
12秒前
ty完成签到,获得积分10
12秒前
打打应助qweasdzxcqwe采纳,获得10
12秒前
科研通AI5应助qweasdzxcqwe采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582