QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application

数量结构-活动关系 生物浓缩 分子描述符 试验装置 适用范围 化学 机器学习 人工智能 生物系统 环境化学 计算机科学 生物累积 生物
作者
Jiamin Xu,Kun Wang,Shuhui Men,Yang Yang,Quan Zhou,Zhenguang Yan
出处
期刊:Environment International [Elsevier]
卷期号:177: 108003-108003 被引量:9
标识
DOI:10.1016/j.envint.2023.108003
摘要

Bioconcentration factor (BCF) is one of the important parameters for developing human health ambient water quality criteria (HHAWQC) for chemical pollutants. Traditional experimental method to obtain BCF is time-consuming and costly. Therefore, prediction of BCF by modeling has attracted much attention. QSAR (Quantitative Structure-Activity Relationship) model based on molecular descriptor is often used to predict BCF, however, in order to improve the accuracy of prediction, previous models are only applicable for prediction for a single category of substance and a single species, and cannot meet the needs of BCF prediction of pollutants lacing toxicity data. In this study, optimized 17 traditional molecular descriptor and five kinds of bioactivity descriptor were selected from more than 200 molecular descriptor and 25 kinds of biological activity descriptors. A QSAR-QSIIR (Quantitative Structure In vitro-In vivo Relationship) model suitable for multiple chemical substances and whole species is constructed by using optimized 4-MLP machine learning algorithm with selected molecular and bioactivity descriptors. The constructed model significantly improves the prediction accuracy of BCF. The R2 of verification set and test set are 0.8575 and 0.7924, respectively, and the difference between predicted BCF and measured BCF is mostly less than 1.5 times. Then, BCF of BTEX in Chinese common aquatic products is predicted using the constructed QSAR-QSIIR model, and the HHAWQC of BTEX in China are derived using the predicted BCF, which provides a valuable reference for establishment of China's BTEX water quality standards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Light完成签到,获得积分10
1秒前
1秒前
善学以致用应助LaLune采纳,获得10
2秒前
又夏完成签到,获得积分10
2秒前
FashionBoy应助明明采纳,获得10
2秒前
往徕完成签到,获得积分10
3秒前
搜集达人应助ziyue采纳,获得10
4秒前
doctorw发布了新的文献求助10
4秒前
5秒前
5秒前
雪白发卡完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
LaInh完成签到,获得积分10
7秒前
一一应助看文献了采纳,获得10
7秒前
大个应助ziyue采纳,获得10
8秒前
9秒前
LaInh发布了新的文献求助10
9秒前
塔塔饼完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
zzg完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
不想起名字完成签到,获得积分10
14秒前
kk发布了新的文献求助10
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI2S应助帕尼灬尼采纳,获得10
17秒前
田様应助蝶步韶华采纳,获得10
17秒前
17秒前
木木发布了新的文献求助10
18秒前
卷卷发布了新的文献求助10
18秒前
SY发布了新的文献求助10
18秒前
小蘑菇应助英俊的白安采纳,获得10
19秒前
wut发布了新的文献求助30
19秒前
丘比特应助钟琪采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712