Exploring the Complexities of Dissolved Organic Matter Photochemistry from the Molecular Level by Using Machine Learning Approaches

反应性(心理学) 光化学 溶解有机碳 傅里叶变换离子回旋共振 化学 辐照 分子 有机分子 转化(遗传学) 河口 环境化学 生物系统 离子 有机化学 海洋学 物理 基因 地质学 病理 核物理学 生物 替代医学 医学 生物化学
作者
Chen Zhao,Xinyue Xu,Hongmei Chen,Fengwen Wang,Penghui Li,Chen He,Quan Shi,Yuanbi Yi,Xiaomeng Li,Si‐Liang Li,Ding He
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 17889-17899 被引量:21
标识
DOI:10.1021/acs.est.3c00199
摘要

Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward, where photochemical reactions significantly affect its transformation and fate. The irradiation experiments can provide valuable information on the photochemical reactivity (photolabile, photoresistant, and photoproduct) of molecules. However, the inconsistency of the fate of irradiated molecules among different experiments curtailed our understanding of the roles the photochemical reactions have played, which cannot be properly addressed by traditional approaches. Here, we conducted irradiation experiments for samples from two large estuaries in China. Molecules that occurred in irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry and assigned probabilistic labels to define their photochemical reactivity. These molecules with probabilistic labels were used to construct a learning database for establishing a suitable machine learning (ML) model. We further applied our well-trained ML model to "un-matched" (i.e., not detected in our irradiation experiments) molecules from five estuaries worldwide, to predict their photochemical reactivity. Results showed that numerous molecules with strong photolability can be captured solely by the ML model. Moreover, comparing DOM photochemical reactivity in five estuaries revealed that the riverine DOM chemistry largely determines their subsequent photochemical transformation. We offer an expandable and renewable approach based on ML to compatibly integrate existing irradiation experiments and shed insight into DOM transformation and degradation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIJIngcan发布了新的文献求助10
1秒前
洽洽瓜子shine完成签到,获得积分10
1秒前
ykxa发布了新的文献求助10
2秒前
木子发布了新的文献求助10
2秒前
小忙完成签到 ,获得积分10
3秒前
shi hui应助草莓味的榴莲采纳,获得10
4秒前
英俊的铭应助zyp采纳,获得10
4秒前
Apei发布了新的文献求助10
4秒前
科研通AI5应助zhao采纳,获得10
4秒前
5秒前
kk应助jessica采纳,获得100
5秒前
充电宝应助忘情者神殇采纳,获得10
6秒前
阿红完成签到,获得积分10
6秒前
6秒前
机智秋烟完成签到,获得积分10
6秒前
科研通AI5应助黒面包采纳,获得10
7秒前
华仔应助xx采纳,获得10
7秒前
净水涟漪发布了新的文献求助10
7秒前
科研通AI5应助可靠寒松采纳,获得10
7秒前
7秒前
CipherSage应助song采纳,获得10
8秒前
李爱国应助老迟到的冬瓜采纳,获得10
8秒前
9秒前
爆米花应助阿航采纳,获得10
10秒前
11秒前
7788完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
凹凸先森完成签到 ,获得积分0
13秒前
广州小肥羊完成签到 ,获得积分10
13秒前
小黑鲨发布了新的文献求助10
13秒前
领导范儿应助雨碎寒江采纳,获得10
13秒前
13秒前
无餍应助liu采纳,获得10
14秒前
zhaoqiwei发布了新的文献求助100
14秒前
14秒前
15秒前
科研通AI5应助Apei采纳,获得10
16秒前
yydlt完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488394
求助须知:如何正确求助?哪些是违规求助? 3076072
关于积分的说明 9143688
捐赠科研通 2768441
什么是DOI,文献DOI怎么找? 1519172
邀请新用户注册赠送积分活动 703618
科研通“疑难数据库(出版商)”最低求助积分说明 701922