Dissecting order amidst chaos of programmed cell deaths: construction of a diagnostic model for KIRC using transcriptomic information in blood-derived exosomes and single-cell multi-omics data in tumor microenvironment

微泡 肿瘤微环境 计算生物学 转录组 生物 混沌(操作系统) 订单(交换) 肿瘤细胞 计算机科学 小RNA 癌症研究 基因 遗传学 基因表达 经济 计算机安全 财务
作者
Chengbang Wang,Yuan He,Jie Zheng,Xiang Wang,Shaohua Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:14 被引量:14
标识
DOI:10.3389/fimmu.2023.1130513
摘要

Background Kidney renal clear cell carcinoma (KIRC) is the most frequently diagnosed subtype of renal cell carcinoma (RCC); however, the pathogenesis and diagnostic approaches for KIRC remain elusive. Using single-cell transcriptomic information of KIRC, we constructed a diagnostic model depicting the landscape of programmed cell death (PCD)-associated genes, namely cell death-related genes (CDRGs). Methods In this study, six CDRG categories, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA sequencing (RNA-seq) data of blood-derived exosomes from the exoRBase database, RNA-seq data of tissues from The Cancer Genome Atlas (TCGA) combined with control samples from the GTEx databases, and single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database were downloaded. Next, we intersected the differentially expressed genes (DEGs) of the KIRC cohort from exoRBase and the TCGA databases with CDRGs and DEGs obtained from single-cell datasets, further screening out the candidate biomarker genes using clinical indicators and machine learning methods and thus constructing a diagnostic model for KIRC. Finally, we investigated the underlying mechanisms of key genes and their roles in the tumor microenvironment using scRNA-seq, single-cell assays for transposase-accessible chromatin sequencing (scATAC-seq), and the spatial transcriptomics sequencing (stRNA-seq) data of KIRC provided by the GEO database. Result We obtained 1,428 samples and 216,155 single cells. After the rational screening, we constructed a 13-gene diagnostic model for KIRC, which had high diagnostic efficacy in the exoRBase KIRC cohort (training set: AUC = 1; testing set: AUC = 0.965) and TCGA KIRC cohort (training set: AUC = 1; testing set: AUC = 0.982), with an additional validation cohort from GEO databases presenting an AUC value of 0.914. The results of a subsequent analysis revealed a specific tumor epithelial cell of TRIB3 high subset. Moreover, the results of a mechanical analysis showed the relatively elevated chromatin accessibility of TRIB3 in tumor epithelial cells in the scATAC data, while stRNA-seq verified that TRIB3 was predominantly expressed in cancer tissues. Conclusions The 13-gene diagnostic model yielded high accuracy in KIRC screening, and TRIB3 high tumor epithelial cells could be a promising therapeutic target for KIRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北国雪未消完成签到 ,获得积分10
刚刚
刚刚
山山而川完成签到 ,获得积分10
3秒前
e麓绝尘完成签到 ,获得积分10
5秒前
喜悦香萱完成签到 ,获得积分10
14秒前
申木完成签到 ,获得积分10
15秒前
老张完成签到 ,获得积分10
18秒前
铜豌豆完成签到 ,获得积分10
21秒前
阿成完成签到,获得积分10
25秒前
云落完成签到 ,获得积分10
28秒前
39秒前
nicheng完成签到 ,获得积分0
40秒前
一味愚完成签到,获得积分10
44秒前
席江海完成签到,获得积分10
48秒前
Dlan完成签到,获得积分10
49秒前
LIJIngcan完成签到 ,获得积分10
50秒前
FangyingTang完成签到 ,获得积分10
52秒前
bug完成签到,获得积分10
53秒前
ruiruirui完成签到,获得积分10
55秒前
Guo完成签到 ,获得积分10
1分钟前
吱吱吱完成签到 ,获得积分10
1分钟前
CHSLN完成签到 ,获得积分10
1分钟前
科研通AI2S应助温乐松采纳,获得10
1分钟前
1分钟前
1分钟前
汉堡包应助Ray采纳,获得10
1分钟前
666完成签到 ,获得积分10
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
CodeCraft应助科研通管家采纳,获得30
1分钟前
joeqin完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
南风不竞完成签到,获得积分10
1分钟前
kanong完成签到,获得积分0
2分钟前
章铭-111完成签到 ,获得积分10
2分钟前
培培完成签到 ,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
rui完成签到 ,获得积分10
2分钟前
2分钟前
juice完成签到 ,获得积分10
2分钟前
多边形完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466840
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067384
捐赠科研通 2750158
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913