纳米点
阳极
材料科学
降级(电信)
碳纤维
压力(语言学)
过渡金属
化学工程
离子
纳米技术
电极
化学
催化作用
复合材料
电气工程
有机化学
语言学
哲学
物理化学
复合数
工程类
作者
Yiming Liu,Jing Wang,Qinhao Shi,Mouhui Yan,Shengyu Zhao,Wuliang Feng,Ruijuan Qi,Jiaqiang Xu,Jiayan Luo,Jiujun Zhang,Yufeng Zhao
标识
DOI:10.1002/anie.202303875
摘要
Abstract Transition‐metal phosphides (TMPs) as typical conversion‐type anode materials demonstrate extraordinary theoretical charge storage capacity for sodium ion batteries, but the unavoidable volume expansion and irreversible capacity loss upon cycling represent their long‐standing limitations. Herein we report a stress self‐adaptive structure with ultrafine FeP nanodots embedded in dense carbon microplates skeleton (FeP@CMS) via the spatial confinement of carbon quantum dots (CQDs). Such an architecture delivers a record high specific capacity (778 mAh g −1 at 0.05 A g −1 ) and ultra‐long cycle stability (87.6 % capacity retention after 10 000 cycles at 20 A g −1 ), which outperform the state‐of‐the‐art literature. We decode the fundamental reasons for this unprecedented performance, that such an architecture allows the spontaneous stress transfer from FeP nanodots to the surrounding carbon matrix, thus overcomes the intrinsic chemo‐mechanical degradation of metal phosphides.
科研通智能强力驱动
Strongly Powered by AbleSci AI