A graph-based framework to integrate semantic object/land-use relationships for urban land-use mapping with case studies of Chinese cities

土地利用 兴趣点 地理 计算机科学 图形 对象(语法) 地图学 人工智能 理论计算机科学 工程类 土木工程
作者
Yu Su,Yanfei Zhong,Yinhe Liu,Zhendong Zheng
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (7): 1582-1614 被引量:3
标识
DOI:10.1080/13658816.2023.2203199
摘要

AbstractUrban land-use types, such as residential and administration, can be inferred through semantic objects and their relationships. Point of interest (POI) data can serve as the semantic objects for urban land-use mapping. However, the previous POI-based approaches have rarely considered the relationships between the semantic objects in the urban land-use mapping, and three main challenges remain: 1) the lack of paired semantic object/land-use samples; 2) the lack of a unified model for semantic objects and the relationships between sematic objects and urban land use; and 3) the difficulty of automatically learning semantic object/land-use mapping relationships. In this paper, to address these issues, a graph-based urban land-use mapping framework integrating semantic object/land-use relationships (GOLR) is proposed. Based on open-source area of interest (AOI) and POI data, an urban object/land-use (UOLU) dataset covering 34 cities in China was built. To model the spatial and mapping relationships, the semantic objects and their relationships are used to jointly build an urban land-use graph. The mapping from semantic objects to urban land use can then be learned by the urban land-use graph isomorphic network (ULGIN) model. Finally, the GOLR framework was applied to obtain accurate land-use mapping results for multiple Chinese cities.Keywords: Urban land-use mappinggraph convolutional networkpoint of interestarea of interest Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data and the codes used in this study are available from https://doi.org/10.6084/m9.figshare.20310489.Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant Nos. 42071350 and 42211530032, and LIESMARS Special Research Funding.Notes on contributorsYu SuYu Su is a student at Wuhan University. Her research interests include urban land-use mapping based on multi-source geographic data. She contributed to the conceptualization, methodology, validation, formal analysis, investigation, data curation, and writing.Yanfei ZhongYanfei Zhong is a professor at Wuhan University. His research interests include remote sensing image interpretation and GIScience. He contributed to the conceptualization, methodology, formal analysis, investigation, resources, writing, supervision, and funding acquisition.Yinhe LiuYinhe Liu is a student at Wuhan University. His research interests include high-resolution remote sensing classification and land-cover mapping. He contributed to the methodology and data curation.Zhendong ZhengZhendong Zheng is a student at Wuhan University. His research interests include remote sensing image scene classification. He contributed to the software and data curation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hiii发布了新的文献求助10
2秒前
缪伟发布了新的文献求助10
3秒前
4秒前
青云完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
缪伟完成签到,获得积分20
13秒前
冲冲冲发布了新的文献求助10
14秒前
14秒前
yu发布了新的文献求助10
16秒前
18秒前
汉堡包应助靖哥哥采纳,获得10
18秒前
JOBZ发布了新的文献求助10
20秒前
失眠的菠萝完成签到,获得积分10
20秒前
20秒前
dwr168发布了新的文献求助10
20秒前
Jasper应助西一阿铭采纳,获得10
22秒前
小鼠星球发布了新的文献求助10
23秒前
556完成签到 ,获得积分10
23秒前
fsznc1完成签到 ,获得积分0
24秒前
搬砖狗完成签到,获得积分20
27秒前
大气乘风完成签到 ,获得积分20
27秒前
Joins_Su完成签到 ,获得积分10
31秒前
31秒前
33秒前
大意的冰真完成签到,获得积分10
34秒前
35秒前
左传琦完成签到,获得积分10
35秒前
guoduan完成签到,获得积分10
35秒前
陈陈陈完成签到 ,获得积分10
36秒前
36秒前
量子星尘发布了新的文献求助10
36秒前
39秒前
40秒前
ZG发布了新的文献求助10
40秒前
41秒前
马畅完成签到 ,获得积分10
41秒前
靖哥哥发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431792
求助须知:如何正确求助?哪些是违规求助? 4544653
关于积分的说明 14193386
捐赠科研通 4463776
什么是DOI,文献DOI怎么找? 2446873
邀请新用户注册赠送积分活动 1438218
关于科研通互助平台的介绍 1414921