A graph-based framework to integrate semantic object/land-use relationships for urban land-use mapping with case studies of Chinese cities

土地利用 兴趣点 地理 计算机科学 图形 对象(语法) 地图学 人工智能 理论计算机科学 工程类 土木工程
作者
Yu Su,Yanfei Zhong,Yinhe Liu,Zhendong Zheng
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (7): 1582-1614 被引量:3
标识
DOI:10.1080/13658816.2023.2203199
摘要

AbstractUrban land-use types, such as residential and administration, can be inferred through semantic objects and their relationships. Point of interest (POI) data can serve as the semantic objects for urban land-use mapping. However, the previous POI-based approaches have rarely considered the relationships between the semantic objects in the urban land-use mapping, and three main challenges remain: 1) the lack of paired semantic object/land-use samples; 2) the lack of a unified model for semantic objects and the relationships between sematic objects and urban land use; and 3) the difficulty of automatically learning semantic object/land-use mapping relationships. In this paper, to address these issues, a graph-based urban land-use mapping framework integrating semantic object/land-use relationships (GOLR) is proposed. Based on open-source area of interest (AOI) and POI data, an urban object/land-use (UOLU) dataset covering 34 cities in China was built. To model the spatial and mapping relationships, the semantic objects and their relationships are used to jointly build an urban land-use graph. The mapping from semantic objects to urban land use can then be learned by the urban land-use graph isomorphic network (ULGIN) model. Finally, the GOLR framework was applied to obtain accurate land-use mapping results for multiple Chinese cities.Keywords: Urban land-use mappinggraph convolutional networkpoint of interestarea of interest Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data and the codes used in this study are available from https://doi.org/10.6084/m9.figshare.20310489.Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant Nos. 42071350 and 42211530032, and LIESMARS Special Research Funding.Notes on contributorsYu SuYu Su is a student at Wuhan University. Her research interests include urban land-use mapping based on multi-source geographic data. She contributed to the conceptualization, methodology, validation, formal analysis, investigation, data curation, and writing.Yanfei ZhongYanfei Zhong is a professor at Wuhan University. His research interests include remote sensing image interpretation and GIScience. He contributed to the conceptualization, methodology, formal analysis, investigation, resources, writing, supervision, and funding acquisition.Yinhe LiuYinhe Liu is a student at Wuhan University. His research interests include high-resolution remote sensing classification and land-cover mapping. He contributed to the methodology and data curation.Zhendong ZhengZhendong Zheng is a student at Wuhan University. His research interests include remote sensing image scene classification. He contributed to the software and data curation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿奶完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
十一应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
4秒前
4秒前
麦地娜发布了新的文献求助10
4秒前
乐乐应助蒸盐粥采纳,获得10
5秒前
5秒前
路绪震完成签到,获得积分20
7秒前
7秒前
lin完成签到 ,获得积分10
7秒前
lalali发布了新的文献求助10
8秒前
机智的冰夏完成签到,获得积分10
8秒前
9秒前
尖叫尖叫完成签到,获得积分10
9秒前
10秒前
Tom完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535