Greenscreen: A simple method to remove artifactual signals and enrich for true peaks in genomic datasets including ChIP-seq data

生物 染色质免疫沉淀 基因组 计算生物学 编码 基因组学 染色质 基因组DNA 计算机科学 遗传学 DNA 基因 基因表达 发起人
作者
Samantha Klasfeld,Thomas Roulé,Doris Wagner
出处
期刊:The Plant Cell [Oxford University Press]
卷期号:34 (12): 4795-4815 被引量:3
标识
DOI:10.1093/plcell/koac282
摘要

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to identify factor binding to genomic DNA and chromatin modifications. ChIP-seq data analysis is affected by genomic regions that generate ultra-high artifactual signals. To remove these signals from ChIP-seq data, the Encyclopedia of DNA Elements (ENCODE) project developed comprehensive sets of regions defined by low mappability and ultra-high signals called blacklists for human, mouse (Mus musculus), nematode (Caenorhabditis elegans), and fruit fly (Drosophila melanogaster). However, blacklists are not currently available for many model and nonmodel species. Here, we describe an alternative approach for removing false-positive peaks called greenscreen. Greenscreen is easy to implement, requires few input samples, and uses analysis tools frequently employed for ChIP-seq. Greenscreen removes artifactual signals as effectively as blacklists in Arabidopsis thaliana and human ChIP-seq dataset while covering less of the genome and dramatically improves ChIP-seq peak calling and downstream analyses. Greenscreen filtering reveals true factor binding overlap and occupancy changes in different genetic backgrounds or tissues. Because it is effective with as few as two inputs, greenscreen is readily adaptable for use in any species or genome build. Although developed for ChIP-seq, greenscreen also identifies artifactual signals from other genomic datasets including Cleavage Under Targets and Release Using Nuclease. We present an improved ChIP-seq pipeline incorporating greenscreen that detects more true peaks than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助奋斗的青年采纳,获得10
刚刚
科研通AI6应助乐观的阿这采纳,获得10
1秒前
hefunan完成签到,获得积分10
3秒前
xht发布了新的文献求助10
4秒前
4秒前
4秒前
寂寞的无敌完成签到,获得积分10
4秒前
打打应助酷酷妙梦采纳,获得10
4秒前
4秒前
demo1发布了新的文献求助10
4秒前
5秒前
天份完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
rabwang完成签到,获得积分10
5秒前
5秒前
5秒前
慕青应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
NattyPoe应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小陈发布了新的文献求助20
6秒前
小二郎应助转圈圈采纳,获得10
6秒前
toutou应助刘老师采纳,获得10
7秒前
FFF发布了新的文献求助10
8秒前
Rocc发布了新的文献求助50
8秒前
mao发布了新的文献求助10
8秒前
歪歪完成签到,获得积分10
8秒前
9秒前
ze发布了新的文献求助10
9秒前
Ziy发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758607
求助须知:如何正确求助?哪些是违规求助? 5516616
关于积分的说明 15391531
捐赠科研通 4895924
什么是DOI,文献DOI怎么找? 2633383
邀请新用户注册赠送积分活动 1581501
关于科研通互助平台的介绍 1537138