清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Greenscreen: A simple method to remove artifactual signals and enrich for true peaks in genomic datasets including ChIP-seq data

生物 染色质免疫沉淀 基因组 计算生物学 编码 基因组学 染色质 基因组DNA 计算机科学 遗传学 DNA 基因 基因表达 发起人
作者
Samantha Klasfeld,Thomas Roulé,Doris Wagner
出处
期刊:The Plant Cell [Oxford University Press]
卷期号:34 (12): 4795-4815 被引量:3
标识
DOI:10.1093/plcell/koac282
摘要

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to identify factor binding to genomic DNA and chromatin modifications. ChIP-seq data analysis is affected by genomic regions that generate ultra-high artifactual signals. To remove these signals from ChIP-seq data, the Encyclopedia of DNA Elements (ENCODE) project developed comprehensive sets of regions defined by low mappability and ultra-high signals called blacklists for human, mouse (Mus musculus), nematode (Caenorhabditis elegans), and fruit fly (Drosophila melanogaster). However, blacklists are not currently available for many model and nonmodel species. Here, we describe an alternative approach for removing false-positive peaks called greenscreen. Greenscreen is easy to implement, requires few input samples, and uses analysis tools frequently employed for ChIP-seq. Greenscreen removes artifactual signals as effectively as blacklists in Arabidopsis thaliana and human ChIP-seq dataset while covering less of the genome and dramatically improves ChIP-seq peak calling and downstream analyses. Greenscreen filtering reveals true factor binding overlap and occupancy changes in different genetic backgrounds or tissues. Because it is effective with as few as two inputs, greenscreen is readily adaptable for use in any species or genome build. Although developed for ChIP-seq, greenscreen also identifies artifactual signals from other genomic datasets including Cleavage Under Targets and Release Using Nuclease. We present an improved ChIP-seq pipeline incorporating greenscreen that detects more true peaks than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Xiu采纳,获得10
4秒前
13秒前
Xiu完成签到,获得积分10
14秒前
Xiu发布了新的文献求助10
18秒前
Mine完成签到,获得积分10
20秒前
蝎子莱莱xth完成签到,获得积分10
31秒前
氢锂钠钾铷铯钫完成签到,获得积分10
36秒前
samchen完成签到,获得积分10
39秒前
Square完成签到,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
Jasper应助懦弱的问芙采纳,获得10
1分钟前
小烦同学完成签到,获得积分10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
羊羔蓉完成签到,获得积分10
2分钟前
2分钟前
练得身形似鹤形完成签到 ,获得积分10
2分钟前
TEMPO发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助lyh的老公采纳,获得10
4分钟前
喜悦向日葵完成签到 ,获得积分10
4分钟前
王0535完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
qiongqiong完成签到 ,获得积分10
5分钟前
5分钟前
随心所欲完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715110
求助须知:如何正确求助?哪些是违规求助? 5230494
关于积分的说明 15274024
捐赠科研通 4866165
什么是DOI,文献DOI怎么找? 2612734
邀请新用户注册赠送积分活动 1562936
关于科研通互助平台的介绍 1520260