已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Greenscreen: A simple method to remove artifactual signals and enrich for true peaks in genomic datasets including ChIP-seq data

生物 染色质免疫沉淀 基因组 计算生物学 编码 基因组学 染色质 基因组DNA 计算机科学 遗传学 DNA 基因 基因表达 发起人
作者
Samantha Klasfeld,Thomas Roulé,Doris Wagner
出处
期刊:The Plant Cell [Oxford University Press]
卷期号:34 (12): 4795-4815 被引量:3
标识
DOI:10.1093/plcell/koac282
摘要

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to identify factor binding to genomic DNA and chromatin modifications. ChIP-seq data analysis is affected by genomic regions that generate ultra-high artifactual signals. To remove these signals from ChIP-seq data, the Encyclopedia of DNA Elements (ENCODE) project developed comprehensive sets of regions defined by low mappability and ultra-high signals called blacklists for human, mouse (Mus musculus), nematode (Caenorhabditis elegans), and fruit fly (Drosophila melanogaster). However, blacklists are not currently available for many model and nonmodel species. Here, we describe an alternative approach for removing false-positive peaks called greenscreen. Greenscreen is easy to implement, requires few input samples, and uses analysis tools frequently employed for ChIP-seq. Greenscreen removes artifactual signals as effectively as blacklists in Arabidopsis thaliana and human ChIP-seq dataset while covering less of the genome and dramatically improves ChIP-seq peak calling and downstream analyses. Greenscreen filtering reveals true factor binding overlap and occupancy changes in different genetic backgrounds or tissues. Because it is effective with as few as two inputs, greenscreen is readily adaptable for use in any species or genome build. Although developed for ChIP-seq, greenscreen also identifies artifactual signals from other genomic datasets including Cleavage Under Targets and Release Using Nuclease. We present an improved ChIP-seq pipeline incorporating greenscreen that detects more true peaks than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
CUT应助科研通管家采纳,获得20
2秒前
shinysparrow应助科研通管家采纳,获得200
2秒前
m1nt完成签到,获得积分10
2秒前
liuhy完成签到,获得积分10
5秒前
6秒前
7秒前
卢雨生发布了新的文献求助10
11秒前
优美凡双发布了新的文献求助10
13秒前
Phoenix完成签到,获得积分10
15秒前
17秒前
wqa1472完成签到,获得积分10
18秒前
绿巨人完成签到,获得积分10
20秒前
Owen应助煞笔导去死啊采纳,获得10
20秒前
风华正茂发布了新的文献求助10
20秒前
酷波er应助windtalker采纳,获得10
21秒前
卢雨生完成签到,获得积分10
22秒前
23秒前
88完成签到 ,获得积分10
24秒前
熬夜猝死的我完成签到 ,获得积分10
25秒前
虚幻豌豆发布了新的文献求助10
25秒前
27秒前
uikymh完成签到 ,获得积分0
27秒前
共享精神应助优美凡双采纳,获得10
28秒前
Orange应助紫苑采纳,获得20
32秒前
风华正茂完成签到,获得积分10
34秒前
小白完成签到 ,获得积分10
34秒前
可爱的函函应助nana采纳,获得10
36秒前
花陵完成签到 ,获得积分10
36秒前
YANYAN完成签到,获得积分20
42秒前
43秒前
卢艳雨发布了新的文献求助30
47秒前
49秒前
JamesPei应助漱泉枕石采纳,获得10
49秒前
nana完成签到,获得积分10
50秒前
51秒前
54秒前
windtalker发布了新的文献求助10
55秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382