析氧
过电位
纳米片
纳米花
过渡金属
化学工程
材料科学
催化作用
分解水
镍
硫化镍
硫化物
纳米技术
化学
电极
电化学
物理化学
纳米结构
光催化
生物化学
工程类
冶金
作者
Shudi Yu,Dongmei Liu,Cheng Wang,Jie Li,Rui Yu,Yong Wang,Jiongting Yin,Xiaomei Wang,Yukou Du
标识
DOI:10.1016/j.jcis.2023.10.006
摘要
Oxygen evolution reaction (OER) is a multi-electron transfer process, whose intrinsic sluggish dynamic restricts the whole process of overall water splitting (OWS). To address this issue, a porous transition metal sulfide (TMS) catalyst with rich heterojunctions was prepared by vulcanization and trace Fe doping of CoMo-based metal–organic framework (MOF). In this work, the nanoflower composed of ultrathin 2D nanosheets anchored on a nickel foam presents a layered interface that contributes to the exposure of active regions. The resulting electrode denoted as Fe@CoMo2S4/Ni3S2/NF required a low overpotential (η10 = 167 mV @ 10 mA cm−2, η50 = 260 mV @ 50 mA cm−2) in 1.0 M KOH for OER and a small cell voltage (E = 1.513 V @ 10 mA cm−2) to power OWS when coupled with commercial Pt/C. It also exhibited splendid morphological and chemical stability with virtually invariant polarization curve and flower-like appearance after 1000 CV cycles, as well as long-term durability over 100 h with a constant current density of 10 mA cm−2. This work revealed the multi-anionic regulation mechanism in the surface reconstruction of sulfide electrocatalysts, and verified that Co/Mo/Ni-based oxysulfide was the true active substance of OER, which inspired the understanding and design of multi-anionic regulated electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI