RHGNN: Fake reviewer detection based on reinforced heterogeneous graph neural networks

计算机科学 判别式 假新闻 图形 同种类的 人工智能 机器学习 情报检索 数据科学 理论计算机科学 互联网隐私 热力学 物理
作者
Jun Zhao,Minglai Shao,Hailiang Tang,Jianchao Liu,Lin Du,Hong Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 111029-111029 被引量:11
标识
DOI:10.1016/j.knosys.2023.111029
摘要

In e-commerce, fake reviewers frequently post fake reviews to mislead consumers into making unwise shopping decisions, seriously affecting customers' benefits. Graph neural networks (GNNs) have been widely cultivated in fake reviewer detection in recent years, but they exhibit two main limitations. Firstly, most approaches model reviewer detection with a homogeneous graph, ignoring the interdependent clues among reviewers, reviews, and products, making them ineffective against stealthy fake reviewers. Secondly, few works noticed the camouflage behavior of fake reviewers, i.e., fake reviewers disguise themselves as authentic ones by establishing links with genuine reviewers, which extremely weakens the suspiciousness of fake reviewers and undermines detection performance. This paper proposes RHGNN, a robust fake reviewers detection framework based on Reinforced Heterogeneous Graph Neural Networks. Particularly, we first model fake reviewer detection with a heterogeneous graph consisting of reviews, reviewers, and products, to capture stealthy fraud clues by investigating their heterogeneous interactive relations. Subsequently, we present a reinforced neighbor selector (RNS) to sample and aggregate top−k informative neighbors while filtering out the camouflaged relationships. Finally, we propose a self-supervised heterogeneous graph embedding method based on mutual information to learn the discriminative features of fake reviewers. Experimental results show that RHGNN demonstrates promising and robust performance, especially in detecting well-disguised fake reviewers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘刘发布了新的文献求助10
1秒前
传奇3应助沉默的婴采纳,获得10
1秒前
秦磊发布了新的文献求助10
2秒前
2秒前
做个大侠完成签到,获得积分10
2秒前
Hello应助陈杰采纳,获得10
3秒前
3秒前
CHAIZH发布了新的文献求助10
4秒前
lizhihahaha完成签到,获得积分10
4秒前
虚拟的落雁完成签到 ,获得积分10
5秒前
huaiting应助重要的智宸采纳,获得10
5秒前
huaiting应助重要的智宸采纳,获得10
5秒前
huaiting应助重要的智宸采纳,获得10
5秒前
huaiting应助重要的智宸采纳,获得10
5秒前
6秒前
JamesPei应助原电池采纳,获得10
6秒前
科研通AI5应助dr采纳,获得10
6秒前
陆晓亦完成签到,获得积分10
7秒前
lizhihahaha发布了新的文献求助10
7秒前
7秒前
DH完成签到 ,获得积分10
7秒前
田様应助Hang采纳,获得10
8秒前
JingranW关注了科研通微信公众号
8秒前
www发布了新的文献求助10
8秒前
潇湘学术完成签到,获得积分10
9秒前
10秒前
bzlsgjdm完成签到 ,获得积分10
10秒前
温柔强炫发布了新的文献求助10
10秒前
阿苏给阿苏的求助进行了留言
11秒前
12秒前
yao发布了新的文献求助10
13秒前
福尔摩琪完成签到,获得积分10
14秒前
liu完成签到,获得积分10
14秒前
15秒前
刻苦安双发布了新的文献求助30
15秒前
重要的智宸完成签到,获得积分20
16秒前
17秒前
奋斗的元瑶完成签到 ,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589034
求助须知:如何正确求助?哪些是违规求助? 3157481
关于积分的说明 9515274
捐赠科研通 2860273
什么是DOI,文献DOI怎么找? 1571736
邀请新用户注册赠送积分活动 737373
科研通“疑难数据库(出版商)”最低求助积分说明 722277