Bi-TWD: A Unified Attack Detection Framework in Recommender Systems Based on BiLSTM and Three-way Decision

计算机科学 推荐系统 领域(数学分析) 特征向量 特征(语言学) 数据挖掘 情报检索 人工智能 数学 语言学 数学分析 哲学
作者
Hongyun Cai,Yuan Shilin,Jie Meng,Ren Jichao
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00270
摘要

The emergence of shilling attacks has threatened the security of recommender systems, which can seriously affect the trustworthiness of recommendation results and reduce the stickiness of users. The state-of-the-art detection methods have showed the effectiveness by manually or automatically extracting detection features. However, these methods lack universality because they tend to focus on detecting individual attacks or group shilling attacks. To this end, this paper proposes a unified framework for detecting various shilling attacks based on BiLSTM and three-way decision, which is named Bi-TWD for short. Firstly, each user rating behavior trajectory is divided into multiple subsequences and a window feature vector can be generated from each subsequence. Secondly, all window feature vectors of the same user are integrated into a fused behavior representation by using BiLSTM and the suspicious degree of each user is calculated. Finally, according to user suspicious degree, users are classified into a positive domain, a negative domain and a boundary domain by using the three-way decision theory. Users in the positive domain are regarded as attack users; the ones in the negative domain are referred to genuine users, while users in the boundary domain are further analyzed. The experiments are conducted on the Netflix and the sampled Amazon datasets, and the experimental results show the effectiveness and excellent performance of the proposed method for detecting various attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈进发布了新的文献求助10
1秒前
Lily完成签到 ,获得积分10
2秒前
cxyyy完成签到,获得积分10
2秒前
xiaopan9083发布了新的文献求助10
4秒前
Stageruner完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
zzzzzzzzzj发布了新的文献求助10
6秒前
贝酷酱完成签到,获得积分10
9秒前
11秒前
小思完成签到 ,获得积分10
12秒前
贝酷酱发布了新的文献求助10
12秒前
我_我完成签到 ,获得积分10
12秒前
1111完成签到,获得积分10
13秒前
13秒前
科目三应助帅气的宽采纳,获得10
14秒前
14秒前
jiayi0114完成签到,获得积分10
16秒前
komo完成签到 ,获得积分10
16秒前
醉生梦死发布了新的文献求助10
17秒前
完美世界应助北辰一刀流采纳,获得10
18秒前
21秒前
雨碎寒江完成签到,获得积分10
21秒前
21秒前
水沐菁华完成签到,获得积分10
23秒前
辣椒油完成签到,获得积分10
23秒前
蒋泽祯发布了新的文献求助10
25秒前
科研通AI5应助xsy2000采纳,获得10
26秒前
帅气的宽发布了新的文献求助10
26秒前
30秒前
喵呜完成签到,获得积分10
30秒前
31秒前
华仔应助追风少年采纳,获得20
32秒前
sw123完成签到 ,获得积分10
33秒前
冷傲书萱应助李李李李李采纳,获得10
33秒前
paltahun发布了新的文献求助10
34秒前
36秒前
蒋泽祯完成签到,获得积分10
37秒前
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917