Bi-TWD: A Unified Attack Detection Framework in Recommender Systems Based on BiLSTM and Three-way Decision

计算机科学 推荐系统 领域(数学分析) 特征向量 特征(语言学) 数据挖掘 情报检索 人工智能 数学 语言学 数学分析 哲学
作者
Hongyun Cai,Yuan Shilin,Jie Meng,Ren Jichao
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00270
摘要

The emergence of shilling attacks has threatened the security of recommender systems, which can seriously affect the trustworthiness of recommendation results and reduce the stickiness of users. The state-of-the-art detection methods have showed the effectiveness by manually or automatically extracting detection features. However, these methods lack universality because they tend to focus on detecting individual attacks or group shilling attacks. To this end, this paper proposes a unified framework for detecting various shilling attacks based on BiLSTM and three-way decision, which is named Bi-TWD for short. Firstly, each user rating behavior trajectory is divided into multiple subsequences and a window feature vector can be generated from each subsequence. Secondly, all window feature vectors of the same user are integrated into a fused behavior representation by using BiLSTM and the suspicious degree of each user is calculated. Finally, according to user suspicious degree, users are classified into a positive domain, a negative domain and a boundary domain by using the three-way decision theory. Users in the positive domain are regarded as attack users; the ones in the negative domain are referred to genuine users, while users in the boundary domain are further analyzed. The experiments are conducted on the Netflix and the sampled Amazon datasets, and the experimental results show the effectiveness and excellent performance of the proposed method for detecting various attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
在水一方应助YiXianCoA采纳,获得10
1秒前
wanci应助十一采纳,获得10
1秒前
NexusExplorer应助子车定帮采纳,获得10
1秒前
1秒前
2秒前
Keira发布了新的文献求助20
2秒前
卢俊江关注了科研通微信公众号
2秒前
英俊的铭应助纪梵希采纳,获得10
3秒前
3秒前
上官若男应助优雅的幼丝采纳,获得10
4秒前
4秒前
果果发布了新的文献求助10
5秒前
6秒前
马某发布了新的文献求助10
6秒前
小马甲应助唠叨的傲薇采纳,获得10
7秒前
7秒前
Ttt发布了新的文献求助10
7秒前
lpt发布了新的文献求助10
7秒前
10秒前
10秒前
科研通AI2S应助sanages采纳,获得10
10秒前
10秒前
cangye驳回了打打应助
12秒前
12秒前
科研小蚂蚁完成签到,获得积分20
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
桐桐应助zhangkx23采纳,获得10
15秒前
乐乐应助欢喜的跳跳糖采纳,获得10
16秒前
Lone发布了新的文献求助10
17秒前
17秒前
叮咚鸡发布了新的文献求助10
17秒前
pluto应助ABCofMEDICIBE采纳,获得10
17秒前
17秒前
妙漉发布了新的文献求助10
17秒前
山人完成签到,获得积分10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326