Towards maximum efficiency in heat pump operation: Self-optimizing defrost initiation control using deep reinforcement learning

除霜 霜冻(温度) 强化学习 控制器(灌溉) 计算机科学 制冷剂 模拟 汽车工程 控制理论(社会学) 控制(管理) 空调 工程类 人工智能 机械工程 材料科学 热交换器 农学 复合材料 生物
作者
Jonas Klingebiel,Moritz Salamon,Plamen Bogdanov,Valerius Venzik,Christian Vering,Dirk Müller
出处
期刊:Energy and Buildings [Elsevier]
卷期号:297: 113397-113397 被引量:10
标识
DOI:10.1016/j.enbuild.2023.113397
摘要

Air Source Heat Pumps (ASHPs) are a key technology in sustainable heating and cooling applications. Using air as heat source in cold climate conditions causes frost related performance degradation, and thus frequent defrosting is necessary. Typically, demand-based defrost initiation methods detect frost with sensors and initiate defrosting when a certain threshold value is reached. However, the performance of these methods is limited to the quality of the threshold value. State-of-the-art applications often assume a constant threshold value that is independent of operating condition. Further, the threshold value is usually determined heuristically based on simplified rules. To overcome these limitations, this study proposes a self-optimizing defrost initiation controller that utilizes deep reinforcement learning (RL). The RL controller autonomously extracts an efficient defrosting strategy under dynamic frosting conditions through a trial-and-error process. The proposed controller is designed to maximize heat pump performance and learns to detect frost using standard sensors of the refrigerant cycle. In a 31-day simulation study, the developed algorithm outperforms time-controlled and demand-controlled methods, resulting in an average efficiency improvement of 12.3% and 6.2%, respectively. Despite the promising results, open research questions must be addressed before RL can be applied to real heat pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
庞威完成签到 ,获得积分10
1秒前
汐月给汐月的求助进行了留言
1秒前
2秒前
ShowMaker举报正在通话中求助涉嫌违规
4秒前
4秒前
5秒前
7秒前
Rich_WH发布了新的文献求助10
7秒前
7秒前
LL77完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
LYL完成签到,获得积分10
8秒前
ding应助YY采纳,获得10
10秒前
11秒前
12秒前
14秒前
15秒前
小二郎应助顺sci采纳,获得10
16秒前
16秒前
薰硝壤应助xiaoxiao采纳,获得10
19秒前
大模型应助Rich_WH采纳,获得10
19秒前
俭朴的寇发布了新的文献求助10
19秒前
星辰大海应助丿小智灬采纳,获得10
20秒前
独特飞鸟完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
盐酸补钙完成签到,获得积分10
22秒前
24秒前
搜集达人应助零点起步采纳,获得10
25秒前
26秒前
老六发布了新的文献求助10
26秒前
落寞的八宝粥完成签到,获得积分20
27秒前
27秒前
糖耶a完成签到,获得积分10
27秒前
健忘惜海完成签到,获得积分20
28秒前
隐形曼青应助look采纳,获得10
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449