Towards maximum efficiency in heat pump operation: Self-optimizing defrost initiation control using deep reinforcement learning

除霜 霜冻(温度) 强化学习 控制器(灌溉) 计算机科学 制冷剂 模拟 汽车工程 控制理论(社会学) 控制(管理) 空调 工程类 人工智能 机械工程 材料科学 热交换器 农学 复合材料 生物
作者
Jonas Klingebiel,Moritz Salamon,Plamen Bogdanov,Valerius Venzik,Christian Vering,Dirk Müller
出处
期刊:Energy and Buildings [Elsevier]
卷期号:297: 113397-113397 被引量:10
标识
DOI:10.1016/j.enbuild.2023.113397
摘要

Air Source Heat Pumps (ASHPs) are a key technology in sustainable heating and cooling applications. Using air as heat source in cold climate conditions causes frost related performance degradation, and thus frequent defrosting is necessary. Typically, demand-based defrost initiation methods detect frost with sensors and initiate defrosting when a certain threshold value is reached. However, the performance of these methods is limited to the quality of the threshold value. State-of-the-art applications often assume a constant threshold value that is independent of operating condition. Further, the threshold value is usually determined heuristically based on simplified rules. To overcome these limitations, this study proposes a self-optimizing defrost initiation controller that utilizes deep reinforcement learning (RL). The RL controller autonomously extracts an efficient defrosting strategy under dynamic frosting conditions through a trial-and-error process. The proposed controller is designed to maximize heat pump performance and learns to detect frost using standard sensors of the refrigerant cycle. In a 31-day simulation study, the developed algorithm outperforms time-controlled and demand-controlled methods, resulting in an average efficiency improvement of 12.3% and 6.2%, respectively. Despite the promising results, open research questions must be addressed before RL can be applied to real heat pumps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
刚刚
科研通AI6应助Ma3ch7采纳,获得30
刚刚
科研通AI6应助lang采纳,获得10
刚刚
1秒前
小栩完成签到,获得积分10
1秒前
SciGPT应助123采纳,获得10
2秒前
phil发布了新的文献求助10
2秒前
2秒前
斯文败类应助西门博超采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
辛勤汲发布了新的文献求助10
3秒前
华仔应助Lia采纳,获得10
4秒前
4秒前
5秒前
5秒前
一小位同学完成签到,获得积分10
6秒前
无花果应助不易采纳,获得10
6秒前
坤坤发布了新的文献求助10
7秒前
西游完成签到,获得积分10
7秒前
王泰一发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
xixixii发布了新的文献求助10
7秒前
orixero应助干中学采纳,获得10
7秒前
胖虎发布了新的文献求助10
8秒前
phil完成签到,获得积分10
9秒前
9秒前
AneyWinter66应助OYZY采纳,获得10
9秒前
情怀应助秀丽的初柔采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
真知棒发布了新的文献求助10
11秒前
11秒前
华仔应助五个采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366