下降(航空)
轨迹优化
非线性规划
惩罚法
下降方向
趋同(经济学)
数学优化
弹道
非线性系统
信任域
最优化问题
功能(生物学)
财产(哲学)
数学
计算机科学
Cone(正式语言)
梯度下降
应用数学
算法
最优控制
机器学习
工程类
航空航天工程
半径
天文
物理
经济
人工神经网络
进化生物学
量子力学
认识论
生物
经济增长
计算机安全
哲学
作者
Lei Xie,Xiang Zhou,Hongbo Zhang,Guojian Tang
出处
期刊:Journal of Guidance Control and Dynamics
[American Institute of Aeronautics and Astronautics]
日期:2023-10-18
卷期号:46 (12): 2346-2361
被引量:2
摘要
Sequential second-order cone programming (SSOCP) is commonly used in aerospace applications for solving nonlinear trajectory optimization problems. The SSOCP possesses good real-time performance. However, one long-standing challenge is its unguaranteed convergence. In this paper, we theoretically analyze the descent property of the [Formula: see text] penalty function in the SSOCP. Using Karush–Kuhn–Tucker conditions, we obtain two important theoretical results: 1) the [Formula: see text] penalty function of the original nonlinear problem always descends along the iteration direction; 2) a sufficiently small trust region can decrease the [Formula: see text] penalty function. Based on these two results, we design an improved trust region shrinking algorithm with theoretically guaranteed convergence. In numerical simulations, we verify the proposed algorithm using a reentry trajectory optimization problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI