Deep orientated distance-transform network for geometric-aware centerline detection

人工智能 计算机科学 分割 计算机视觉 像素 图形 概化理论 距离变换 生物识别 模式识别(心理学) 图像(数学) 数学 统计 理论计算机科学
作者
Zheheng Jiang,Hossein Rahmani,Plamen Angelov,Ritesh Vyas,Huiyu Zhou,Sue Black,Bryan M. Williams
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110028-110028
标识
DOI:10.1016/j.patcog.2023.110028
摘要

The detection of structure centerlines from imaging data plays a crucial role in the understanding, application and further analysis of many diverse problems, such as road mapping, crack detection, medical imaging and biometric identification. In each of these cases, pixel-wise segmentation is not sufficient to understand and quantify overall graph structure and connectivity without further processing that can lead to compound error. We thus require a method for automatic extraction of graph representations of patterning. In this paper, we propose a novel Deep Orientated Distance-transform Network (DODN), which predicts the centerline map and an orientated distance map, comprising orientation and distance in relation to the centerline and allowing exploitation of its geometric properties. This is refined by jointly modeling the relationship between neighboring pixels and connectivity to further enhance the estimated centerline and produce a graph of the structure. The proposed approach is evaluated on a diverse range of problems, including crack detection, road mapping and superficial vein centerline detection from infrared/ color images, improving over the state-of-the-art by 2.1%, 10.9% and 17.3%/ 4.6% respectively in terms of quality, demonstrating its generalizability and performance in a wide range of mapping problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰king发布了新的文献求助10
1秒前
顾矜应助flysky120采纳,获得10
1秒前
sdvsd完成签到,获得积分10
3秒前
惜墨应助炙热芝采纳,获得30
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
25号底片应助科研通管家采纳,获得60
4秒前
Ava应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得20
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
xiaofei666应助科研通管家采纳,获得30
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
俏皮的幼珊完成签到 ,获得积分10
6秒前
行止完成签到,获得积分10
6秒前
7秒前
9秒前
12秒前
13秒前
超帅听枫发布了新的文献求助10
15秒前
沉静WT完成签到 ,获得积分10
15秒前
flysky120发布了新的文献求助10
15秒前
研友_VZG7GZ应助qiuqiu120234978采纳,获得10
15秒前
深情安青应助书生采纳,获得10
16秒前
17秒前
18秒前
Owen应助整齐凌萱采纳,获得10
18秒前
牛奶面包发布了新的文献求助10
19秒前
研友_VZG7GZ应助Lucky采纳,获得10
19秒前
21秒前
22秒前
23秒前
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102