Deep orientated distance-transform network for geometric-aware centerline detection

人工智能 计算机科学 分割 计算机视觉 像素 图形 概化理论 距离变换 生物识别 模式识别(心理学) 图像(数学) 数学 统计 理论计算机科学
作者
Zheheng Jiang,Hossein Rahmani,Plamen Angelov,Ritesh Vyas,Huiyu Zhou,Sue Black,Bryan M. Williams
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110028-110028
标识
DOI:10.1016/j.patcog.2023.110028
摘要

The detection of structure centerlines from imaging data plays a crucial role in the understanding, application and further analysis of many diverse problems, such as road mapping, crack detection, medical imaging and biometric identification. In each of these cases, pixel-wise segmentation is not sufficient to understand and quantify overall graph structure and connectivity without further processing that can lead to compound error. We thus require a method for automatic extraction of graph representations of patterning. In this paper, we propose a novel Deep Orientated Distance-transform Network (DODN), which predicts the centerline map and an orientated distance map, comprising orientation and distance in relation to the centerline and allowing exploitation of its geometric properties. This is refined by jointly modeling the relationship between neighboring pixels and connectivity to further enhance the estimated centerline and produce a graph of the structure. The proposed approach is evaluated on a diverse range of problems, including crack detection, road mapping and superficial vein centerline detection from infrared/ color images, improving over the state-of-the-art by 2.1%, 10.9% and 17.3%/ 4.6% respectively in terms of quality, demonstrating its generalizability and performance in a wide range of mapping problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peng丶Young完成签到,获得积分10
刚刚
刚刚
学术新星完成签到,获得积分10
刚刚
传奇3应助欢欢采纳,获得10
1秒前
littlewhite发布了新的文献求助30
1秒前
木子发布了新的文献求助10
1秒前
1秒前
NiLou完成签到,获得积分10
1秒前
沉静的颦发布了新的文献求助10
2秒前
2秒前
yier完成签到,获得积分10
4秒前
4秒前
凉茗余香完成签到 ,获得积分10
5秒前
蜡笔小猪发布了新的文献求助10
5秒前
超级蘑菇关注了科研通微信公众号
5秒前
滴滴完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
执着的怜寒完成签到,获得积分10
7秒前
伍六七完成签到 ,获得积分10
7秒前
诸觅双完成签到 ,获得积分10
7秒前
无花果应助wbgwudi采纳,获得30
9秒前
zhangyuheng完成签到,获得积分10
9秒前
安静的安寒完成签到,获得积分10
9秒前
跳跃聪健完成签到,获得积分10
10秒前
Negan完成签到,获得积分10
10秒前
10秒前
a1oft完成签到,获得积分10
11秒前
细腻沅发布了新的文献求助10
11秒前
李爱国应助温柔的十三采纳,获得10
11秒前
11秒前
橘子海完成签到 ,获得积分10
11秒前
整齐尔蝶完成签到,获得积分10
13秒前
13秒前
笛子完成签到,获得积分10
13秒前
通~发布了新的文献求助10
13秒前
13秒前
13秒前
梁小鑫完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740