电化学
锂(药物)
材料科学
涂层
兴奋剂
电解质
化学工程
碳酸锂
离子
无机化学
纳米技术
电极
化学
离子键合
有机化学
光电子学
医学
物理化学
工程类
内分泌学
作者
Huai Chen,Jun Ma,Fei Liu,Mengqin Yao
标识
DOI:10.1002/chem.202302569
摘要
Lithium-rich layered oxides (LLOs, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 ) are widely used as cathode materials for lithium-ion batteries due to its high specific capacity, high operating voltage and low cost. However, the LLOs are faced with rapid decay of charge/discharge capacity and voltage, as well as interface side reactions, which limit its electrochemical performance. Herein, the dual strategies of sulfite/sodium ion co-doping and lithium carbonate coating were used to improve it. It founds that modified LLOs achieve 88.74 % initial coulomb efficiency, 295.3 mAh g-1 first turn discharge capacity, in addition to 216.9 mAh g-1 at 1 C, and 87.23 % capacity retention after 100 cycles. Mechanism research indicated that the excellent electrochemical performance benefits from the doping of both Na+ and SO32- , and it could significantly reduce the migration energy barrier of Li+ and promote Li+ migration. Meanwhile, anion and cation are co-doped greatly reduces the band gap of LLOs and increase its electrical conductivity, and its binding effect on Li+ is weakened, making it easier for Li+ to shuttle through the material. In addition, the lithium carbonate coating significantly inhibits the occurrence of interfacial side reactions of LLOs. This work provides a theoretical basis and practical guidance for the further development of LLOs with higher electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI