已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis

机器学习 人工智能 算法 检查表 医学 置信区间 病毒性肝炎 支持向量机 肝炎 诊断优势比 荟萃分析 内科学 计算机科学 心理学 认知心理学
作者
Khadijeh Moulaei,Hamid Sharifi,Kambiz Bahaadinbeigy,Ali Akbar Haghdoost,Naser Nasiri
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:179: 105243-105243 被引量:8
标识
DOI:10.1016/j.ijmedinf.2023.105243
摘要

Lack of accurate and timely diagnosis of hepatitis poses obstacles to effective treatment, disease progression prevention, complication reduction, and life-saving interventions of patients. Utilizing machine learning can greatly enhance the achievement of timely and precise disease diagnosis. Therefore, we carried out this systematic review and meta-analysis to explore the performance of machine learning algorithms in predicting viral hepatitis. Using an extensive literature search in PubMed, Scopus, and Web of Science databases until June 15, 2023, English publications on hepatitis prediction using machine learning algorithms were included. Two authors independently extracted pertinent information from the selected studies. The PRISMA 2020 checklist was followed for study selection and result reporting. The risk of bias was checked using the International Journal of Medical Informatics (IJMEDI) checklist. Data were analyzed using the 'metandi' command in Stata 17. Twenty-one original studies were included, covering 82 algorithms. Sixteen studies utilized five algorithms to predict hepatitis B. Ten studies used five algorithms for hepatitis C prediction. For hepatitis B prediction, the SVM algorithms demonstrated the highest sensitivity (90.0%; 95% confidence interval (CI): 77.0%–96.0%), specificity (94%; 95% CI: 90.0%–97.0%), and a diagnostic odds ratio (DOR) of 145 (95% CI: 37.0–559.0). In the case of hepatitis C, the KNN algorithms exhibited the highest sensitivity (80%; 95% CI:30.0%–97.0%), specificity (95%; 95% CI: 58.0%–99.0%), and DOR (72; 95% CI: 3.0–1644.0) for prediction. SVM and KNN demonstrated superior performance in predicting hepatitis. The proper algorithm along with clinical practice could improve hepatitis prediction and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Yuson_L发布了新的文献求助10
2秒前
hhllhh发布了新的文献求助10
3秒前
儒雅南风发布了新的文献求助10
3秒前
4秒前
4秒前
负责怀莲发布了新的文献求助10
7秒前
8秒前
看不了一点文献应助lzm采纳,获得20
10秒前
852应助mpenny77采纳,获得30
11秒前
眨眼发布了新的文献求助10
14秒前
14秒前
SUE关闭了SUE文献求助
18秒前
19秒前
斯文败类应助Jing采纳,获得10
20秒前
20秒前
NexusExplorer应助迷人的高烽采纳,获得10
20秒前
无情的宛儿完成签到,获得积分10
21秒前
青菜完成签到 ,获得积分10
21秒前
听听发布了新的文献求助10
22秒前
李爱国应助眨眼采纳,获得10
22秒前
无聊又夏完成签到,获得积分10
22秒前
24秒前
YYYZZX1发布了新的文献求助10
27秒前
叶123456789完成签到,获得积分20
29秒前
NattyPoe完成签到,获得积分10
29秒前
顾矜应助中专说唱尼格采纳,获得10
29秒前
scanker1981完成签到,获得积分10
31秒前
31秒前
叶123456789发布了新的文献求助10
32秒前
33秒前
科目三应助科研通管家采纳,获得10
33秒前
33秒前
橙子应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得30
33秒前
33秒前
33秒前
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208