Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis

机器学习 人工智能 算法 检查表 医学 置信区间 病毒性肝炎 支持向量机 肝炎 诊断优势比 荟萃分析 内科学 计算机科学 心理学 认知心理学
作者
Khadijeh Moulaei,Hamid Sharifi,Kambiz Bahaadinbeigy,Ali Akbar Haghdoost,Naser Nasiri
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:179: 105243-105243 被引量:8
标识
DOI:10.1016/j.ijmedinf.2023.105243
摘要

Lack of accurate and timely diagnosis of hepatitis poses obstacles to effective treatment, disease progression prevention, complication reduction, and life-saving interventions of patients. Utilizing machine learning can greatly enhance the achievement of timely and precise disease diagnosis. Therefore, we carried out this systematic review and meta-analysis to explore the performance of machine learning algorithms in predicting viral hepatitis. Using an extensive literature search in PubMed, Scopus, and Web of Science databases until June 15, 2023, English publications on hepatitis prediction using machine learning algorithms were included. Two authors independently extracted pertinent information from the selected studies. The PRISMA 2020 checklist was followed for study selection and result reporting. The risk of bias was checked using the International Journal of Medical Informatics (IJMEDI) checklist. Data were analyzed using the 'metandi' command in Stata 17. Twenty-one original studies were included, covering 82 algorithms. Sixteen studies utilized five algorithms to predict hepatitis B. Ten studies used five algorithms for hepatitis C prediction. For hepatitis B prediction, the SVM algorithms demonstrated the highest sensitivity (90.0%; 95% confidence interval (CI): 77.0%–96.0%), specificity (94%; 95% CI: 90.0%–97.0%), and a diagnostic odds ratio (DOR) of 145 (95% CI: 37.0–559.0). In the case of hepatitis C, the KNN algorithms exhibited the highest sensitivity (80%; 95% CI:30.0%–97.0%), specificity (95%; 95% CI: 58.0%–99.0%), and DOR (72; 95% CI: 3.0–1644.0) for prediction. SVM and KNN demonstrated superior performance in predicting hepatitis. The proper algorithm along with clinical practice could improve hepatitis prediction and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助潇湘雪月采纳,获得10
刚刚
传奇3应助leanne采纳,获得10
刚刚
大模型应助Heartlark采纳,获得10
2秒前
4秒前
moxi摩西完成签到,获得积分10
4秒前
卷卷完成签到,获得积分10
6秒前
时笙发布了新的文献求助10
7秒前
7秒前
pterion完成签到,获得积分10
7秒前
7秒前
9秒前
哒哒完成签到,获得积分10
11秒前
11秒前
循环发布了新的文献求助10
11秒前
幽默毛衣发布了新的文献求助10
14秒前
16秒前
循环完成签到,获得积分10
16秒前
leanne发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
开灯人和关灯人完成签到,获得积分20
19秒前
Stardust发布了新的文献求助10
20秒前
21秒前
FashionBoy应助爱笑晓曼采纳,获得10
22秒前
张雯思发布了新的文献求助10
23秒前
Priority完成签到,获得积分10
24秒前
光热效应发布了新的文献求助30
24秒前
风之星给风之星的求助进行了留言
24秒前
24秒前
ASH发布了新的文献求助10
24秒前
OxO完成签到,获得积分10
24秒前
25秒前
搜集达人应助快乐一江采纳,获得10
25秒前
26秒前
leanne完成签到,获得积分20
27秒前
幽默毛衣完成签到,获得积分10
28秒前
晨曦完成签到,获得积分10
28秒前
延文星发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174