Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis

机器学习 人工智能 算法 检查表 医学 置信区间 病毒性肝炎 支持向量机 肝炎 诊断优势比 荟萃分析 内科学 计算机科学 心理学 认知心理学
作者
Khadijeh Moulaei,Hamid Sharifi,Kambiz Bahaadinbeigy,Ali Akbar Haghdoost,Naser Nasiri
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:179: 105243-105243 被引量:6
标识
DOI:10.1016/j.ijmedinf.2023.105243
摘要

Lack of accurate and timely diagnosis of hepatitis poses obstacles to effective treatment, disease progression prevention, complication reduction, and life-saving interventions of patients. Utilizing machine learning can greatly enhance the achievement of timely and precise disease diagnosis. Therefore, we carried out this systematic review and meta-analysis to explore the performance of machine learning algorithms in predicting viral hepatitis. Using an extensive literature search in PubMed, Scopus, and Web of Science databases until June 15, 2023, English publications on hepatitis prediction using machine learning algorithms were included. Two authors independently extracted pertinent information from the selected studies. The PRISMA 2020 checklist was followed for study selection and result reporting. The risk of bias was checked using the International Journal of Medical Informatics (IJMEDI) checklist. Data were analyzed using the 'metandi' command in Stata 17. Twenty-one original studies were included, covering 82 algorithms. Sixteen studies utilized five algorithms to predict hepatitis B. Ten studies used five algorithms for hepatitis C prediction. For hepatitis B prediction, the SVM algorithms demonstrated the highest sensitivity (90.0%; 95% confidence interval (CI): 77.0%–96.0%), specificity (94%; 95% CI: 90.0%–97.0%), and a diagnostic odds ratio (DOR) of 145 (95% CI: 37.0–559.0). In the case of hepatitis C, the KNN algorithms exhibited the highest sensitivity (80%; 95% CI:30.0%–97.0%), specificity (95%; 95% CI: 58.0%–99.0%), and DOR (72; 95% CI: 3.0–1644.0) for prediction. SVM and KNN demonstrated superior performance in predicting hepatitis. The proper algorithm along with clinical practice could improve hepatitis prediction and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助神秘面筋男采纳,获得10
刚刚
浮沉完成签到,获得积分20
1秒前
季冬十五完成签到,获得积分10
1秒前
2秒前
豆豆发布了新的文献求助10
3秒前
今后应助刘玲玲采纳,获得30
3秒前
Cloud发布了新的文献求助10
4秒前
zdy完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
长雁应助科研通管家采纳,获得10
4秒前
wang应助科研通管家采纳,获得10
4秒前
wangyang发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
木头人应助科研通管家采纳,获得10
5秒前
浮沉发布了新的文献求助10
6秒前
朱小迪发布了新的文献求助30
7秒前
MADMAX发布了新的文献求助10
8秒前
动漫大师发布了新的文献求助10
9秒前
十药九茯苓完成签到,获得积分10
9秒前
kiterunner完成签到,获得积分10
11秒前
龙龙ff11_完成签到,获得积分10
12秒前
NexusExplorer应助豆豆采纳,获得10
14秒前
hihi发布了新的文献求助50
15秒前
15秒前
Cc完成签到,获得积分10
15秒前
iNk应助敖江风云采纳,获得10
17秒前
aloe完成签到,获得积分10
19秒前
默默成风发布了新的文献求助10
20秒前
21秒前
fjh应助taotao采纳,获得10
23秒前
oasissmz完成签到,获得积分10
25秒前
26秒前
26秒前
如意的冰双完成签到 ,获得积分10
27秒前
美丽的从梦完成签到,获得积分20
28秒前
云出发布了新的文献求助10
29秒前
上官若男应助TaoJ采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199