Household financial health: a machine learning approach for data-driven diagnosis and prescription

资产负债表 稳健性(进化) 精算学 经济 财务 业务 生物化学 化学 基因
作者
Kyeongbin Kim,Yoontae Hwang,Dongcheol Lim,Suhyeon Kim,Junghye Lee,Yongjae Lee
出处
期刊:Quantitative Finance [Informa]
卷期号:23 (11): 1565-1595
标识
DOI:10.1080/14697688.2023.2254335
摘要

AbstractHousehold finances are being threatened by unprecedented social and economic upheavals, including an aging society and slow economic growth. Numerous researchers and practitioners have provided guidelines for improving the financial status of households; however, the challenge of handling heterogeneous households remains nontrivial. In this study, we propose a new data-driven framework for the financial health of households to address the needs for diagnosing and improving financial health. This research extends the concept of healthcare to household finance. We develop a novel deep learning-based diagnostic model for estimating household financial health risk scores from real-world household balance sheet data. The proposed model can successfully manage the heterogeneity of households by extracting useful latent representations of household balance sheet data while incorporating the risk information of each variable. That is, we guide the model to generate higher latent values for households with risky balance sheets. We also show that the gradient of the model can be utilized for prescribing recommendations for improving household financial health. The robustness and validity of the new framework are demonstrated using empirical analyses.Keywords: Household financeFinancial healthHeterogeneityRisk scoringDeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Note that Indicator 4 follows the opposite direction of the other indicators. For Indicators 1 to 3, having a large value would increase financial risk, while it is the opposite for Indicator 4. Hence, stochastic dominance in Indicator 4 should also be interpreted in the opposite way from the other indicators.2 In Appendix C, we used the Bonferroni post-hoc test to assess the significance of the difference in risk information for each of the input variables to RI-HAE.3 To be more precise, the reciprocal of shadow price represents the amount of money required to increase the financial risk score by one unit estimated under first-order approximation because shadow price is a slope of the linear function tangent to RI-HAE.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1I1A4069163 and No. NRF-2020R1C1C1011063).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自觉士萧发布了新的文献求助10
刚刚
ValerieLI发布了新的文献求助10
刚刚
爱笑夜蕾发布了新的文献求助10
刚刚
yy发布了新的文献求助10
刚刚
粗犷的斑马完成签到,获得积分10
1秒前
1秒前
CipherSage应助GC采纳,获得10
2秒前
zz完成签到,获得积分10
2秒前
Hmbb发布了新的文献求助10
2秒前
2秒前
2秒前
mafangfang完成签到,获得积分10
2秒前
香蕉觅云应助刘轩雨采纳,获得10
3秒前
3秒前
3秒前
Sylwren完成签到,获得积分10
3秒前
喜宝完成签到 ,获得积分10
3秒前
乂氼完成签到 ,获得积分10
3秒前
优雅绮波完成签到 ,获得积分10
3秒前
xiaoxiaojiang完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
121发布了新的文献求助10
5秒前
秦钦发布了新的文献求助30
5秒前
tingting完成签到,获得积分20
5秒前
5秒前
长情笑柳完成签到,获得积分10
5秒前
小蘑菇应助27采纳,获得10
5秒前
wanglejia完成签到,获得积分10
6秒前
6秒前
6秒前
普鲁卡因发布了新的文献求助10
6秒前
SciGPT应助吴彦祖采纳,获得10
6秒前
而风不止完成签到,获得积分10
6秒前
6秒前
7秒前
慕青应助gaoww采纳,获得10
7秒前
易子完成签到 ,获得积分10
7秒前
daggeraxe完成签到 ,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006