Household financial health: a machine learning approach for data-driven diagnosis and prescription

资产负债表 稳健性(进化) 精算学 经济 财务 业务 生物化学 化学 基因
作者
Kyeongbin Kim,Yoontae Hwang,Dongcheol Lim,Suhyeon Kim,Junghye Lee,Yongjae Lee
出处
期刊:Quantitative Finance [Taylor & Francis]
卷期号:23 (11): 1565-1595
标识
DOI:10.1080/14697688.2023.2254335
摘要

AbstractHousehold finances are being threatened by unprecedented social and economic upheavals, including an aging society and slow economic growth. Numerous researchers and practitioners have provided guidelines for improving the financial status of households; however, the challenge of handling heterogeneous households remains nontrivial. In this study, we propose a new data-driven framework for the financial health of households to address the needs for diagnosing and improving financial health. This research extends the concept of healthcare to household finance. We develop a novel deep learning-based diagnostic model for estimating household financial health risk scores from real-world household balance sheet data. The proposed model can successfully manage the heterogeneity of households by extracting useful latent representations of household balance sheet data while incorporating the risk information of each variable. That is, we guide the model to generate higher latent values for households with risky balance sheets. We also show that the gradient of the model can be utilized for prescribing recommendations for improving household financial health. The robustness and validity of the new framework are demonstrated using empirical analyses.Keywords: Household financeFinancial healthHeterogeneityRisk scoringDeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Note that Indicator 4 follows the opposite direction of the other indicators. For Indicators 1 to 3, having a large value would increase financial risk, while it is the opposite for Indicator 4. Hence, stochastic dominance in Indicator 4 should also be interpreted in the opposite way from the other indicators.2 In Appendix C, we used the Bonferroni post-hoc test to assess the significance of the difference in risk information for each of the input variables to RI-HAE.3 To be more precise, the reciprocal of shadow price represents the amount of money required to increase the financial risk score by one unit estimated under first-order approximation because shadow price is a slope of the linear function tangent to RI-HAE.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1I1A4069163 and No. NRF-2020R1C1C1011063).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
Akim应助小妖怪采纳,获得10
1秒前
dashen应助Shan采纳,获得10
1秒前
1秒前
小衫生发布了新的文献求助10
1秒前
1秒前
1秒前
球球了发布了新的文献求助10
2秒前
2秒前
老实的抽屉完成签到 ,获得积分10
2秒前
3秒前
78888发布了新的文献求助10
3秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
乐一完成签到,获得积分10
5秒前
Hello应助George Will采纳,获得10
5秒前
qunli完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
浮世一梦完成签到 ,获得积分10
7秒前
顺利毕业完成签到,获得积分20
7秒前
百甲发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
酷波er应助yyy采纳,获得100
8秒前
颖儿发布了新的文献求助10
8秒前
9秒前
9秒前
刘铠瑜发布了新的文献求助10
10秒前
10秒前
刘的花发布了新的文献求助10
10秒前
星星完成签到 ,获得积分10
11秒前
xiaojing发布了新的文献求助30
11秒前
12秒前
科研通AI6应助1号选手采纳,获得10
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920