亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Household financial health: a machine learning approach for data-driven diagnosis and prescription

资产负债表 稳健性(进化) 精算学 经济 财务 业务 生物化学 基因 化学
作者
Kyeongbin Kim,Yoontae Hwang,Dongcheol Lim,Suhyeon Kim,Junghye Lee,Yongjae Lee
出处
期刊:Quantitative Finance [Informa]
卷期号:23 (11): 1565-1595
标识
DOI:10.1080/14697688.2023.2254335
摘要

AbstractHousehold finances are being threatened by unprecedented social and economic upheavals, including an aging society and slow economic growth. Numerous researchers and practitioners have provided guidelines for improving the financial status of households; however, the challenge of handling heterogeneous households remains nontrivial. In this study, we propose a new data-driven framework for the financial health of households to address the needs for diagnosing and improving financial health. This research extends the concept of healthcare to household finance. We develop a novel deep learning-based diagnostic model for estimating household financial health risk scores from real-world household balance sheet data. The proposed model can successfully manage the heterogeneity of households by extracting useful latent representations of household balance sheet data while incorporating the risk information of each variable. That is, we guide the model to generate higher latent values for households with risky balance sheets. We also show that the gradient of the model can be utilized for prescribing recommendations for improving household financial health. The robustness and validity of the new framework are demonstrated using empirical analyses.Keywords: Household financeFinancial healthHeterogeneityRisk scoringDeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Note that Indicator 4 follows the opposite direction of the other indicators. For Indicators 1 to 3, having a large value would increase financial risk, while it is the opposite for Indicator 4. Hence, stochastic dominance in Indicator 4 should also be interpreted in the opposite way from the other indicators.2 In Appendix C, we used the Bonferroni post-hoc test to assess the significance of the difference in risk information for each of the input variables to RI-HAE.3 To be more precise, the reciprocal of shadow price represents the amount of money required to increase the financial risk score by one unit estimated under first-order approximation because shadow price is a slope of the linear function tangent to RI-HAE.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1I1A4069163 and No. NRF-2020R1C1C1011063).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦杏仁发布了新的文献求助10
12秒前
51秒前
Phil完成签到 ,获得积分10
1分钟前
水豚完成签到,获得积分10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
2分钟前
空2完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
YWJ关注了科研通微信公众号
4分钟前
4分钟前
世隐完成签到,获得积分10
4分钟前
4分钟前
YWJ发布了新的文献求助10
4分钟前
领导范儿应助dr0422采纳,获得10
4分钟前
5分钟前
wanci应助thousandlong采纳,获得10
5分钟前
jerry发布了新的文献求助10
5分钟前
5分钟前
thousandlong发布了新的文献求助10
5分钟前
你好完成签到 ,获得积分10
5分钟前
6分钟前
完美世界应助jerry采纳,获得10
6分钟前
jerry完成签到,获得积分10
6分钟前
思源应助Q哈哈哈采纳,获得10
6分钟前
6分钟前
文静的笑阳完成签到,获得积分10
6分钟前
酷波er应助gy采纳,获得10
6分钟前
7分钟前
今后应助yangon采纳,获得10
7分钟前
7分钟前
7分钟前
yangon发布了新的文献求助10
7分钟前
7分钟前
gy发布了新的文献求助10
8分钟前
8分钟前
8分钟前
LYL完成签到,获得积分10
8分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229680
求助须知:如何正确求助?哪些是违规求助? 2877243
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621808