Household financial health: a machine learning approach for data-driven diagnosis and prescription

资产负债表 稳健性(进化) 精算学 经济 财务 业务 生物化学 基因 化学
作者
Kyeongbin Kim,Yoontae Hwang,Dongcheol Lim,Suhyeon Kim,Junghye Lee,Yongjae Lee
出处
期刊:Quantitative Finance [Taylor & Francis]
卷期号:23 (11): 1565-1595
标识
DOI:10.1080/14697688.2023.2254335
摘要

AbstractHousehold finances are being threatened by unprecedented social and economic upheavals, including an aging society and slow economic growth. Numerous researchers and practitioners have provided guidelines for improving the financial status of households; however, the challenge of handling heterogeneous households remains nontrivial. In this study, we propose a new data-driven framework for the financial health of households to address the needs for diagnosing and improving financial health. This research extends the concept of healthcare to household finance. We develop a novel deep learning-based diagnostic model for estimating household financial health risk scores from real-world household balance sheet data. The proposed model can successfully manage the heterogeneity of households by extracting useful latent representations of household balance sheet data while incorporating the risk information of each variable. That is, we guide the model to generate higher latent values for households with risky balance sheets. We also show that the gradient of the model can be utilized for prescribing recommendations for improving household financial health. The robustness and validity of the new framework are demonstrated using empirical analyses.Keywords: Household financeFinancial healthHeterogeneityRisk scoringDeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Note that Indicator 4 follows the opposite direction of the other indicators. For Indicators 1 to 3, having a large value would increase financial risk, while it is the opposite for Indicator 4. Hence, stochastic dominance in Indicator 4 should also be interpreted in the opposite way from the other indicators.2 In Appendix C, we used the Bonferroni post-hoc test to assess the significance of the difference in risk information for each of the input variables to RI-HAE.3 To be more precise, the reciprocal of shadow price represents the amount of money required to increase the financial risk score by one unit estimated under first-order approximation because shadow price is a slope of the linear function tangent to RI-HAE.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1I1A4069163 and No. NRF-2020R1C1C1011063).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭栋完成签到,获得积分10
3秒前
Lu发布了新的文献求助10
3秒前
3秒前
8秒前
桔子完成签到,获得积分10
10秒前
二般人完成签到 ,获得积分10
15秒前
忐忑的阑香完成签到,获得积分10
16秒前
16秒前
罗晓倩完成签到,获得积分10
16秒前
ShiyuZuo完成签到,获得积分10
17秒前
诚心千筹发布了新的文献求助10
20秒前
20秒前
YamDaamCaa应助shawn采纳,获得100
23秒前
桃子完成签到,获得积分20
23秒前
Rondab应助大观天下采纳,获得30
24秒前
DijiaXu应助爱科研采纳,获得10
27秒前
水中鱼完成签到,获得积分10
27秒前
共享精神应助无情的匪采纳,获得10
27秒前
科目三应助yoyo采纳,获得10
27秒前
28秒前
前隆是狗完成签到,获得积分10
28秒前
yyyyyyy111发布了新的文献求助10
31秒前
SYLH应助淅淅12345采纳,获得10
32秒前
34秒前
YWang发布了新的文献求助10
35秒前
李健的小迷弟应助hh采纳,获得10
36秒前
38秒前
Orange应助莉丽采纳,获得10
38秒前
39秒前
juwish完成签到,获得积分10
40秒前
cst发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
40秒前
Fengliguantou发布了新的文献求助10
41秒前
41秒前
脑洞疼应助zriverm采纳,获得10
42秒前
林宝雯发布了新的文献求助10
43秒前
cccyq完成签到,获得积分10
44秒前
45秒前
诚心千筹完成签到,获得积分10
46秒前
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105