材料科学
纳米复合材料
生物矿化
韧性
微观结构
复合材料
无定形固体
纳米技术
极限抗拉强度
原位
各向异性
化学工程
结晶学
气象学
工程类
物理
化学
量子力学
作者
Xuan Zhao,Zehong Chen,Hao Zhuo,Chunyan Zhong,Ge Shi,Tanglong Liu,Xiaofang Huang,Linxin Zhong,Xinwen Peng
标识
DOI:10.1002/adfm.202310094
摘要
Abstract The fascinating mechanical property of biomaterials in nature to support living organisms largely relies on their hierarchical and ordered structures. However, for the current biomimetic materials, their organic–inorganic heterostructures typically exhibit poor uniformity, weak interfacial bonding, and various defects, limiting the breakthrough in strength and toughness. Herein, an ultra‐strong and transparent biomimetic nanocomposite is presented by combining orientation effects and in situ biomineralization to precisely engineer each level of the hierarchy. The orientation of nanofiber provides long‐range and order matrix to remarkably eliminate defects, promote multi‐scale interfacial bonding and increase the crystalline degree and size of organic matrix; while the in situ mineralization of amorphous inorganic oligomers firmly welds the organic–inorganic interface together to form a continuous and homogeneous monolithic structure. Due to the unique structural features, the nanocomposite exhibits a tensile strength of up to 1168.1 ± 10.2 MPa and a toughness of 34.1 ± 0.8 MJ m −3 . Furthermore, the nanocomposite film is imparted with high transparence and anisotropic optical properties. This work is expected to provide insights into the design of high‐performance biomineralized materials from structural coupling to precisely controlling interfaces and microstructure.
科研通智能强力驱动
Strongly Powered by AbleSci AI