腐蚀
材料科学
涂层
电化学
壳聚糖
微观结构
傅里叶变换红外光谱
冶金
复合材料
化学工程
化学
电极
工程类
物理化学
作者
Etrat Anees,Madeeha Riaz,Hina Imtiaz,Tousif Hussain
标识
DOI:10.1016/j.jmbbm.2023.106268
摘要
Chitosan (Ch) is a naturally occurring biocompatible and bio-degradable material with high corrosion protective capacities for metals in various corrosive media. Hydroxyapatite (HA) is a significant biodegradable and bioactive material. In the present work, chitosan-hydroxyapatite (Ch-HA) composite coatings with various concentrations of chitosan were made on 316L stainless steel (316L SS) using sol–gel dip coating technique. The coatings were characterized by X-ray diffraction (XRD), FTIR, SEM, and electrochemical measurements. The surface morphology results (SEM) of coated implants exposed the fairly dense microstructures having uniformity without cracks and pores indicating that coating was successfully deposited. From electrochemical analyses, it was observed that the value of corrosion current density and the corrosion rate decreased from 6.03 to 0.15 and 5.56-0.13 respectively indicating that 1.5gCh-HA is the best coating concentration. The electrochemical results demonstrated an improvement in the corrosion resistance of 316L SS than the bare one. The decrease in slope and loop area of cyclic voltammograms reveals about improvement in corrosion resistance. This increment in corrosion resistance of the Ch-HA coated SS implant in the artificial saliva is as 1.5gCh-HA > 2gCh-HA >1gCh-HA >0.5gCh-HA. Furthermore, Ch-HA coatings revealed appropriate adhesion with 316L SS substrate for its use in dental implants.
科研通智能强力驱动
Strongly Powered by AbleSci AI