检出限
电催化剂
材料科学
涂层
咪唑酯
选择性
电化学
沸石咪唑盐骨架
纳米技术
金属有机骨架
化学
催化作用
电极
色谱法
无机化学
吸附
生物化学
物理化学
有机化学
作者
Wang Sun,Junyan Liu,Xiaoqian Zha,Guorong Sun,Yang Wang
标识
DOI:10.1016/j.jcis.2023.10.022
摘要
Multiple microenvironmental modulation of zeolite imidazole framework-8 (ZIF-8) is expected to solve the long-term intractable problem of low sensitivity in electrochemical sensing. Herein, the metal phthalocyanines with different central ions (PcM, M = Fe, Co, Ni and Cu) were introduced into ZIF-8 by in-situ synthesis method. Then, the hollow composite nanomaterials, HZIF-8/PcFe and HZIF-8@PcFe (HZIF-8, i.e., hollow ZIF-8) with different TA (tannic acid) coating thicknesses (∼11 nm and ∼33 nm) were successfully fabricated by carefully designed polyphenol-mediated modulation (PMM) strategy. Next, the HZIF-8@PcFe electrochemical sensor was constructed for selective and sensitive analysis by selecting dopamine (DA) as the analyte. The TA coating (superhydrophilic state), PcFe (redox properties) and hollow MOF cavity (faster mass transfer) was used as the triple microenvironment modulation of ZIF-8 to enhance the electrocatalytic performance. Under the optimum conditions (pH = 8.0), the linear correlations of 0.3 to 200 μmol/L was obtained for the peak current response, with a detection limit of 0.1 μmol/L (S/N = 3, i.e., Signal/Noise = 3). Meanwhile, the HZIF-8@PcFe electrochemical sensor exhibited excellent interference selectivity, reproducibility and stability, which enabled it to detect low abundance DA in real samples. And the F-test (homogeneity test of variance) and t-test (student's t test) statistical analyses were employed to enhance the accuracy of the actual samples' detection. This work will enlighten researchers working in the field of porous framework composites and open up new paths for the development of hollow MOFs hybrid materials in electrochemical sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI