Exploring the diffusion of digital fashion and influencers' social roles in the Metaverse: an analysis of Twitter hashtag networks

影响力营销 虚拟实境 计算机科学 社交网络(社会语言学) 竞赛(生物学) 人际关系 社会化媒体 万维网 社会学 人机交互 营销 虚拟现实 业务 生态学 生物 关系营销 社会科学 市场营销管理
作者
HaeJung Maria Kim,Swagata Chakraborty
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:34 (1): 107-128 被引量:23
标识
DOI:10.1108/intr-09-2022-0727
摘要

Purpose The study aims to explore the digital fashion trend within the Metaverse, characterized by non-fungible tokens (NFTs), across Twitter networks. Integrating theories of diffusion of innovation, two-step flow of communication and self-efficacy, the authors aimed to uncover the diffusion structure and the influencer's social roles undertaken by social entities in fostering communication and collaboration for the advancement of Metaverse fashion. Design/methodology/approach Social network analysis examined the critical graph metrics to profile, visualize, and cluster the unstructured network data. The authors used the NodeXL program to analyze two hashtag keyword networks, “#metaverse fashion” and “#metawear,” using Twitter API data. Cluster, semantic, and time series analyses were performed to visualize the contents and contexts of communication and collaboration in the diffusion of Metaverse fashion. Findings The results unraveled the “broadcast network” structure and the influencers' social roles of opinion leaders and market mavens within Twitter's “#metaverse fashion” diffusion. The roles of innovators and early adopters among influencers were comparable in collaborating within the competition venues, promoting awareness and participation in digital fashion diffusion during specific “fad” periods, particularly when digital fashion NFTs and cryptocurrencies became intertwined with the competition in the Metaverse. Originality/value The study contributed to theory building by integrating three theories, emphasizing effective communication and collaboration among influencers, organizations, and competition venues in broadcasting digital fashion within shared networks. The validation of multi-faceted Social Network Analysis was crucial for timely insights, highlighting the critical digital fashion equity in capturing consumers' attention and driving engagement and ownership of Metaverse fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大力无声完成签到,获得积分20
2秒前
2秒前
可爱的函函应助李本来采纳,获得10
2秒前
天天快乐应助清澜庭采纳,获得10
2秒前
冬冬冬完成签到 ,获得积分20
3秒前
英俊的铭应助Manchester4607采纳,获得10
3秒前
灵巧高山应助Manchester4607采纳,获得10
3秒前
4秒前
5秒前
大力无声发布了新的文献求助10
5秒前
中中发布了新的文献求助10
6秒前
Mars发布了新的文献求助10
6秒前
whh发布了新的文献求助10
6秒前
6秒前
传奇3应助紫紫吃菠菜采纳,获得10
6秒前
psh发布了新的文献求助20
7秒前
guard发布了新的文献求助10
7秒前
李健的小迷弟应助ty采纳,获得20
9秒前
9秒前
桐桐应助壮观以松采纳,获得10
9秒前
李健的粉丝团团长应助123采纳,获得10
9秒前
10秒前
LL发布了新的文献求助10
10秒前
10秒前
柯云完成签到,获得积分10
10秒前
11秒前
Akim应助南昌黑人采纳,获得10
11秒前
12秒前
跳跃若风发布了新的文献求助10
12秒前
科研通AI2S应助南昌黑人采纳,获得10
12秒前
传奇3应助南昌黑人采纳,获得10
12秒前
12秒前
12秒前
傲娇松鼠发布了新的文献求助10
13秒前
wangxiaoyu完成签到,获得积分10
13秒前
YHY完成签到,获得积分10
13秒前
14秒前
傻大完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734