激进的
化学
杂原子
脱质子化
组合化学
试剂
电子转移
光催化
有机合成
光化学
亲核细胞
有机化学
催化作用
光催化
戒指(化学)
离子
作者
Krishnakumar Sachidanandan,Ben Niu,Sébastien Laulhé
出处
期刊:Chemcatchem
[Wiley]
日期:2023-08-14
卷期号:15 (21)
被引量:15
标识
DOI:10.1002/cctc.202300860
摘要
Abstract The merging of photocatalysis with halogen‐atom transfer (XAT) processes has proven to be a versatile tool for the generation of carbon‐centered radicals in organic synthesis. XAT processes are unique in that they generate radicals without requiring the use of strong reductants necessary for the traditional single electron transfer (SET) activation of halides. Pathways to achieve XAT in synthetic applications can be categorized into three major sections: i) heteroatom‐based activators, ii) metal‐based activators, and iii) carbon‐based activators among which α‐aminoalkyl radicals have taken the center stage. Access to these α‐aminoalkyl radicals as XAT reagents has gained significant attention in the past few years due to the robustness of the reactions, the simplicity of the reagents required, and the broadness of their applications. Generation of these α‐aminoalkyl radicals is simply achieved through the single electron oxidation of tertiary amines, which after deprotonation at the α‐position generates the α‐aminoalkyl radicals. Due to the wide scope of tertiary amines available and the tunable nucleophilicity of α‐aminoalkyl radical formed, this strategy has become an attractive alternative to heteroatom/metal‐based radicals for XAT. In this minireview, we focus our attention on recent (2020–2023) developments and uses of this robust technology to mediate XAT processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI