规模不经济
利用
阿尔法(金融)
共同基金
被动管理
投资管理
基金基金
偏移量(计算机科学)
BETA(编程语言)
业务
样品(材料)
财务
计算机科学
精算学
规模经济
营销
计算机安全
克朗巴赫阿尔法
化学
色谱法
市场流动性
程序设计语言
服务(商务)
作者
Victor DeMiguel,Javier Gil-Bazo,Francisco J. Nogales,André Alves Portela Santos
标识
DOI:10.1016/j.jfineco.2023.103737
摘要
Machine-learning methods exploit fund characteristics to select tradable long-only portfolios of mutual funds that earn significant out-of-sample annual alphas of 2.4% net of all costs. The methods unveil interactions in the relation between fund characteristics and future performance. For instance, past performance is a particularly strong predictor of future performance for more active funds. Machine learning identifies managers whose skill is not sufficiently offset by diseconomies of scale, consistent with informational frictions preventing investors from identifying the outperforming funds. Our findings demonstrate that investors can benefit from active management, but only if they have access to sophisticated prediction methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI