A Method for Recognizing Full Forwarding Dense False Target Jamming in the Absence of Label Information

计算机科学 干扰 人工智能 模式识别(心理学) 特征(语言学) Echo(通信协议) 雷达 支持向量机 卷积神经网络 信号(编程语言) 特征提取 人工神经网络 计算机网络 电信 语言学 哲学 物理 热力学 程序设计语言
作者
Ruihui Peng,Wenbin Wei,Dianxing Sun,Zhong Yang,Guohong Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 22952-22966 被引量:3
标识
DOI:10.1109/jsen.2023.3305673
摘要

Full forwarding dense false target jamming signals correlate highly with real target echoes, and their training samples are difficult to obtain, constraining radars from effectively identifying real and false target echoes. To overcome this challenging problem, this article systematically analyzes and studies the frequency response characteristics of the radar and jammer and models their influence on the amplitude–frequency features of the real and false target echoes. Then, positive-unlabeled learning (PU learning)-based algorithm is proposed to solve the jamming signal recognition problem of missing label information. The core idea of this algorithm is to obtain the amplitude–frequency response features of the two signal types for initial dataset construction and then use the support vector machine (SVM) to estimate the class prior probabilities of each echo to reconstruct a new training dataset. After that, a dual-channel feature fusion network (1DCNN-LSTM) is introduced, comprising a 1-D convolutional neural network (1DCNN) and a long short-term memory (LSTM) network to improve further recognition accuracy. The effectiveness of the proposed features and the PU-1DCNN-LSTM algorithm is demonstrated through simulated and measured experiments, revealing that the proposed method can guarantee a recognition accuracy of 98.4% on the measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊博士完成签到,获得积分10
1秒前
痴痴的噜完成签到,获得积分10
2秒前
不回首发布了新的文献求助10
2秒前
心空完成签到,获得积分10
4秒前
5秒前
lalala发布了新的文献求助10
6秒前
ylyao完成签到,获得积分10
6秒前
7秒前
11秒前
lfl发布了新的文献求助10
11秒前
12秒前
13秒前
谦让的随阴完成签到,获得积分20
13秒前
lv19971006发布了新的文献求助10
14秒前
Grace发布了新的文献求助10
16秒前
17秒前
17秒前
dddd完成签到,获得积分10
17秒前
ZJJ发布了新的文献求助10
18秒前
crrrr完成签到,获得积分10
18秒前
18秒前
英俊的铭应助流子采纳,获得10
19秒前
20秒前
lalala发布了新的文献求助10
22秒前
crrrr发布了新的文献求助20
22秒前
22秒前
科研通AI2S应助电解液轨迹采纳,获得10
24秒前
sssssssssss完成签到,获得积分10
24秒前
维拉帕米完成签到,获得积分10
25秒前
26秒前
27秒前
小巧凌晴发布了新的文献求助10
27秒前
27秒前
酷波er应助堀江真夏采纳,获得10
29秒前
29秒前
上官若男应助谦让的随阴采纳,获得10
30秒前
橙子慢慢来完成签到,获得积分10
30秒前
ChenSSS发布了新的文献求助10
31秒前
31秒前
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340313
求助须知:如何正确求助?哪些是违规求助? 2968359
关于积分的说明 8633331
捐赠科研通 2647907
什么是DOI,文献DOI怎么找? 1449881
科研通“疑难数据库(出版商)”最低求助积分说明 671549
邀请新用户注册赠送积分活动 660594