A Method for Recognizing Full Forwarding Dense False Target Jamming in the Absence of Label Information

计算机科学 干扰 人工智能 模式识别(心理学) 特征(语言学) Echo(通信协议) 雷达 支持向量机 卷积神经网络 信号(编程语言) 特征提取 人工神经网络 物理 程序设计语言 哲学 热力学 电信 语言学 计算机网络
作者
Ruihui Peng,Wenbin Wei,Dianxing Sun,Zhong Yang,Guohong Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 22952-22966 被引量:3
标识
DOI:10.1109/jsen.2023.3305673
摘要

Full forwarding dense false target jamming signals correlate highly with real target echoes, and their training samples are difficult to obtain, constraining radars from effectively identifying real and false target echoes. To overcome this challenging problem, this article systematically analyzes and studies the frequency response characteristics of the radar and jammer and models their influence on the amplitude–frequency features of the real and false target echoes. Then, positive-unlabeled learning (PU learning)-based algorithm is proposed to solve the jamming signal recognition problem of missing label information. The core idea of this algorithm is to obtain the amplitude–frequency response features of the two signal types for initial dataset construction and then use the support vector machine (SVM) to estimate the class prior probabilities of each echo to reconstruct a new training dataset. After that, a dual-channel feature fusion network (1DCNN-LSTM) is introduced, comprising a 1-D convolutional neural network (1DCNN) and a long short-term memory (LSTM) network to improve further recognition accuracy. The effectiveness of the proposed features and the PU-1DCNN-LSTM algorithm is demonstrated through simulated and measured experiments, revealing that the proposed method can guarantee a recognition accuracy of 98.4% on the measured data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘静完成签到,获得积分10
刚刚
1秒前
学吧发布了新的文献求助10
1秒前
赘婿应助jjjjchou采纳,获得10
2秒前
3秒前
4秒前
善学以致用应助NANA采纳,获得30
4秒前
归尘发布了新的文献求助10
4秒前
5秒前
回颜轻生完成签到,获得积分20
5秒前
6秒前
梅思寒完成签到 ,获得积分10
6秒前
cuber完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
qing发布了新的文献求助10
7秒前
魏凡之完成签到,获得积分10
8秒前
8秒前
CipherSage应助小小高采纳,获得10
8秒前
唯有一个心完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
xzs发布了新的文献求助10
9秒前
yuan05完成签到 ,获得积分10
9秒前
aaaaa完成签到,获得积分10
9秒前
张莜莜发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Owen应助寒冷猫咪采纳,获得10
11秒前
11秒前
11秒前
苏姗姗发布了新的文献求助10
12秒前
zzsossos完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
陈陈陈发布了新的文献求助10
13秒前
星辰大海应助111采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513