重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Method for Recognizing Full Forwarding Dense False Target Jamming in the Absence of Label Information

计算机科学 干扰 人工智能 模式识别(心理学) 特征(语言学) Echo(通信协议) 雷达 支持向量机 卷积神经网络 信号(编程语言) 特征提取 人工神经网络 物理 程序设计语言 哲学 热力学 电信 语言学 计算机网络
作者
Ruihui Peng,Wenbin Wei,Dianxing Sun,Zhong Yang,Guohong Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 22952-22966 被引量:3
标识
DOI:10.1109/jsen.2023.3305673
摘要

Full forwarding dense false target jamming signals correlate highly with real target echoes, and their training samples are difficult to obtain, constraining radars from effectively identifying real and false target echoes. To overcome this challenging problem, this article systematically analyzes and studies the frequency response characteristics of the radar and jammer and models their influence on the amplitude–frequency features of the real and false target echoes. Then, positive-unlabeled learning (PU learning)-based algorithm is proposed to solve the jamming signal recognition problem of missing label information. The core idea of this algorithm is to obtain the amplitude–frequency response features of the two signal types for initial dataset construction and then use the support vector machine (SVM) to estimate the class prior probabilities of each echo to reconstruct a new training dataset. After that, a dual-channel feature fusion network (1DCNN-LSTM) is introduced, comprising a 1-D convolutional neural network (1DCNN) and a long short-term memory (LSTM) network to improve further recognition accuracy. The effectiveness of the proposed features and the PU-1DCNN-LSTM algorithm is demonstrated through simulated and measured experiments, revealing that the proposed method can guarantee a recognition accuracy of 98.4% on the measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tukafoer发布了新的文献求助10
刚刚
刚刚
2秒前
量子星尘发布了新的文献求助10
3秒前
Jacob完成签到,获得积分10
3秒前
3秒前
3秒前
木槿完成签到 ,获得积分10
4秒前
阿盛完成签到,获得积分10
4秒前
花陵发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
羽与裕发布了新的文献求助10
8秒前
行行行发布了新的文献求助10
8秒前
zhumeinv发布了新的文献求助20
9秒前
9秒前
10秒前
10秒前
123完成签到,获得积分10
12秒前
彭于晏应助LYF采纳,获得10
12秒前
阳光襄发布了新的文献求助10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
且慢应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
且慢应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
苹果亦云发布了新的文献求助10
16秒前
hardworkcd发布了新的文献求助10
17秒前
一颗梨发布了新的文献求助10
18秒前
情怀应助Chi_bio采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468217
求助须知:如何正确求助?哪些是违规求助? 4571659
关于积分的说明 14331127
捐赠科研通 4498190
什么是DOI,文献DOI怎么找? 2464368
邀请新用户注册赠送积分活动 1453089
关于科研通互助平台的介绍 1427758