Coarse-grained model simulation-guided localized DNA signal amplification probe for miRNA detection

信号(编程语言) DNA 计算机科学 生物系统 分子诊断学 纳米技术 滚动圆复制 探测理论 功能(生物学) 杂交探针 计算生物学 生物物理学 化学 材料科学 细胞生物学 生物 生物信息学 DNA复制 探测器 生物化学 电信 程序设计语言
作者
Linghao Zhang,Hongyang Zhao,Hu Yang,Xin Su
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:239: 115622-115622 被引量:1
标识
DOI:10.1016/j.bios.2023.115622
摘要

DNA-based enzyme-free signal amplification strategies are widely employed to detect biomarkers in low abundance. To enhance signal amplification, localized DNA reaction units which increases molecular collision probability is commonly utilized. However, the current understanding of the structure-function relationships in localized DNA signal amplification probes is limited, leading to unsatisfied performance. In this study, we introduced a coarse-grained molecular model to simulate the dynamic behavior of two DNA reaction units within a DNA enzyme-free signal amplification circuit called Localized Catalytic Hairpin Assembly (LCHA). We investigated the impact of localized distance and flexibility on reaction performance. The most efficient LCHA probe guided by simulation exhibits sensitivity 28 times greater that of free CHA, with a detection limit of miR-21 reaching 16 pM, while the least effective LCHA probe demonstrated a modest improvement of only 7 times. We successfully employed the optimized probe to differentiate cancer cells from normal cells based on their miR-21 expression levels, showcasing its quantification ability. By elucidating the mechanistic insights and structure-function relationship in our work, we aim to contribute valuable information that can save users' time and reduce costs when designing localized DNA probes. With a comprehensive understanding of how the localization affects probe performance, researchers can now make more informed and efficient decisions during the design process. This work would find broad applications of DNA nanotechnology in biosensing, biocomputing, and bionic robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老詹头发布了新的文献求助10
刚刚
思源应助叫滚滚采纳,获得10
1秒前
2秒前
刘歌完成签到 ,获得积分10
2秒前
阿巡完成签到,获得积分10
2秒前
Chen完成签到,获得积分10
4秒前
LSH970829发布了新的文献求助10
4秒前
哈哈哈完成签到 ,获得积分10
5秒前
汤姆完成签到,获得积分10
5秒前
7秒前
7秒前
翠翠完成签到,获得积分10
8秒前
8秒前
LSH970829完成签到,获得积分10
9秒前
Lyg完成签到,获得积分20
10秒前
坚强的樱发布了新的文献求助10
10秒前
baodingning完成签到,获得积分10
11秒前
11秒前
公茂源发布了新的文献求助30
11秒前
热爱完成签到,获得积分10
12秒前
13秒前
叫滚滚发布了新的文献求助10
14秒前
星瑆心完成签到,获得积分10
14秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
Lyg发布了新的文献求助10
15秒前
Dksido完成签到,获得积分10
16秒前
兰博基尼奥完成签到,获得积分10
16秒前
热情芷荷发布了新的文献求助10
18秒前
random完成签到,获得积分10
19秒前
19秒前
果果瑞宁完成签到,获得积分10
19秒前
20秒前
机智小虾米完成签到,获得积分20
20秒前
goldenfleece完成签到,获得积分10
21秒前
科研通AI2S应助学者采纳,获得10
21秒前
小杨完成签到,获得积分10
22秒前
sutharsons应助科研通管家采纳,获得30
23秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808