How does change in leisure-time physical activity influence the growth trajectory of depressive symptoms in college students?

抑郁症状 潜在增长模型 心理健康 闲暇时间 心理学 萧条(经济学) 临床心理学 增长模型 体力活动 医学 老年学 精神科 物理疗法 认知 发展心理学 经济 宏观经济学 微观经济学
作者
Bo Shen,Gaoyuan Cui,Bo‐Hyoung Jin
出处
期刊:Journal of American College Health [Informa]
卷期号:: 1-8 被引量:1
标识
DOI:10.1080/07448481.2023.2252503
摘要

AbstractObjectives: This longitudinal study was designed to examine the growth trajectory of depressive symptoms among early-stage college students and how the development of vigorous, moderate, and light leisure-time physical activity (LTPA) was related to the growth trajectory. Participants: Four hundred and eighty-eight first- and second-year undergraduate students completed measures of depressive symptoms and LTPA at the beginning, middle, and end of a semester. Methods: Latent growth mixture modeling (LGMM) was conducted. Results: On average, students reported mild levels of depressive symptoms with significant variability at the semester start, but the symptoms elevated over time. LGMM identified two trajectories: low/gradual (75.8%) and high/increasing (24.2%). For both groups, neither vigorous nor moderate LTPA development predicted the growth trajectory of depressive symptoms. However, the change of light LTPA was negatively and significantly associated with the growth trajectory. Even when controlling for covariances, increased light LTPA still had a unique effect on buffering depressive symptoms. Conclusion: There is great potential in targeting comprehensive LTPA strategies to improve college students’ mental health and promote an active lifestyle.Keywords: Mental healthphysical activitylatent growth mixture modeling Conflict of interest disclosureThe authors have no conflicts of interest to report. The authors confirm that the research presented in this article met the ethical guidelines, including adherence to the legal requirements, of China and received approval from the Institutional Review Board of Hubei University of Economics.Additional informationFundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Xsmall采纳,获得10
刚刚
草莓糖发布了新的文献求助10
刚刚
春夏秋冬发布了新的文献求助10
1秒前
1秒前
MENG完成签到,获得积分20
1秒前
2秒前
2秒前
wuxunxun2015发布了新的文献求助10
3秒前
jackhlj完成签到,获得积分10
3秒前
无限的妙芙完成签到,获得积分10
3秒前
晓晓雪发布了新的文献求助10
4秒前
旭宝儿发布了新的文献求助10
4秒前
MFCC发布了新的文献求助10
4秒前
mmh发布了新的文献求助10
4秒前
6秒前
鳗鱼鸽子完成签到,获得积分10
6秒前
飞快的元菱完成签到,获得积分20
6秒前
思源应助春夏秋冬采纳,获得10
6秒前
拓跋箴完成签到,获得积分10
6秒前
哈哈哈哈发布了新的文献求助30
7秒前
开心发布了新的文献求助20
7秒前
科研通AI2S应助连鸿煊采纳,获得10
7秒前
zzz发布了新的文献求助10
8秒前
SibetHu发布了新的文献求助10
9秒前
9秒前
Miki完成签到,获得积分10
9秒前
共享精神应助teriteri采纳,获得10
10秒前
阿兰完成签到 ,获得积分10
10秒前
11秒前
hqq2312完成签到,获得积分10
11秒前
超级冰旋发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
柯同发布了新的文献求助10
13秒前
14秒前
lllllll完成签到,获得积分10
14秒前
希望天下0贩的0应助随心采纳,获得10
15秒前
科研通AI2S应助迪迪采纳,获得10
15秒前
Barry完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386