Cow key point detection in indoor housing conditions with a deep learning model

跛足 挤奶 钥匙(锁) 步态 计算机科学 人工智能 动物福利 奶牛 自动化 机器学习 物理医学与康复 工程类 医学 动物科学 计算机安全 生态学 生物 机械工程 外科
作者
Marjaneh Taghavi,Helena Russello,W. Ouweltjes,C. Kamphuis,Ines Adriaens
出处
期刊:Journal of Dairy Science [Elsevier]
卷期号:107 (4): 2374-2389 被引量:3
标识
DOI:10.3168/jds.2023-23680
摘要

Lameness in dairy cattle is a costly and highly prevalent problem that impacts all aspects of sustainable dairy production, including animal welfare. Automation of gait assessment would allow monitoring of locomotion in which the cows' walking pattern can be evaluated frequently and with limited labor. With the right interpretation algorithms, this could result in more timely detection of locomotion problems. This in turn would facilitate timely intervention and early treatment which is crucial to reduce the impact of abnormal behavior and pain on animal welfare. Gait features of dairy cows can potentially be derived from key points that locate crucial anatomical points on a cows' body. The aim of this study is 2-fold: (1) demonstrate automation of the detection of dairy cows' key points in a practical indoor setting with natural occlusions from gates and races, and (2) propose the necessary steps to post process these key points to make them suitable for subsequent gait feature calculations. Both the automated detection of key points as well as the post-processing of them are crucial prerequisites for camera-based automated locomotion monitoring in a real farm environment. Side-view video footage of 34 Holstein Friesian dairy cows, captured when exiting the milking parlor, were used for model development. From these videos, 758 samples of 2 successive frames were extracted. A previously developed deep learning model called T-LEAP was trained to detect 17 key points on cows in our indoor farm environment with natural occlusions. To this end, the data set of 758 samples was randomly split into a train (n = 22 cows; no. of samples = 388), validation (n = 7 cows; no. of samples = 108), and test data set (n = 15 cows; no. of samples = 262). The performance of T-LEAP to automatically assign key points in our indoor situation was assessed using the average percentage of correctly detected key points using a threshold of 0.2 of the head length (PCKh@0.2). The model's performance on the test set achieved a good result with PCKh@0.2: 89% on all 17 key points together. Detecting key points on the back (n = 3 key points) of the cow had the poorest performance PCKh@0.2: 59%. In addition to the indoor performance of the model, a more detailed study of the detection performance was conducted to formulate post-processing steps necessary to use these key points for gait feature calculations and subsequent automated locomotion monitoring. This detailed study included the evaluation of the detection performance in multiple directions. This study revealed that the performance of the key points on a cows' back were the poorest in the horizontal direction. Based on this more in-depth study, we recommend the implementation of the outlined post-processing techniques to address the following issues: (1) correcting camera distortion, (2) rectifying erroneous key point detection, and (3) establishing the necessary procedures for translating hoof key points into gait features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
丘比特应助lsy采纳,获得10
1秒前
冷艳如柏完成签到,获得积分10
2秒前
东木完成签到,获得积分10
4秒前
小马甲应助朱加德采纳,获得10
4秒前
wu发布了新的文献求助20
4秒前
超帅的哒发布了新的文献求助10
5秒前
彭于晏应助Wmhuahuaood采纳,获得10
5秒前
五条悟关注了科研通微信公众号
6秒前
失忆的金鱼应助研友_Z6Qrbn采纳,获得10
6秒前
Hello应助刘洋采纳,获得10
9秒前
彭于晏应助wxr采纳,获得10
9秒前
超帅的哒完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
Leo完成签到 ,获得积分10
11秒前
orixero应助清新采纳,获得10
11秒前
nnnn完成签到,获得积分10
12秒前
13秒前
lzzzz完成签到 ,获得积分10
15秒前
16秒前
17秒前
鱼遇发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
chenghua发布了新的文献求助10
18秒前
青青青青发布了新的文献求助10
18秒前
zp发布了新的文献求助80
19秒前
胡凤凰发布了新的文献求助10
19秒前
Yang完成签到,获得积分10
19秒前
nnnn发布了新的文献求助10
19秒前
刘溜溜完成签到 ,获得积分10
19秒前
20秒前
Orange应助liutianbao采纳,获得10
20秒前
星辰大海应助wu采纳,获得10
20秒前
吴昱晟发布了新的文献求助20
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260627
求助须知:如何正确求助?哪些是违规求助? 2901771
关于积分的说明 8317194
捐赠科研通 2571394
什么是DOI,文献DOI怎么找? 1397005
科研通“疑难数据库(出版商)”最低求助积分说明 653622
邀请新用户注册赠送积分活动 632105