电解质
材料科学
阳极
法拉第效率
化学工程
极化(电化学)
碳酸二甲酯
钝化
磷酸三甲酯
碳酸盐
石墨
锂离子电池
电池(电)
无机化学
电极
纳米技术
化学
磷酸盐
复合材料
有机化学
物理化学
甲醇
热力学
功率(物理)
物理
图层(电子)
工程类
冶金
作者
Hyuntae Lee,Hyeongguk An,Hongjun Chang,Tae‐Jin Lee,Seungsoo Park,Soyeon Lee,Jiwoong Kang,Seungwoo Byon,Bonhyeop Koo,Hochun Lee,Yong Min Lee,Janghyuk Moon,Sujong Chae,Hongkyung Lee
标识
DOI:10.1016/j.ensm.2023.102995
摘要
Amidst the surging demand for battery-powered automobiles, it is crucial to tackle the safety risks of Li plating triggered by high cell polarization to achieve extremely fast charging (XFC) of Li-ion batteries. This study explores the impact of Li+ desolvation and solid-electrolyte interphase (SEI) chemistry on cell polarizations by utilizing linear carbonate (LC)-based, LiPF6-concentrated electrolytes (LPCEs). In the LC family, dimethyl carbonate (DMC) is thermodynamically preferred to facilitate desolvation kinetics, thereby lowering the charge-transfer barrier at the graphite anode. For effective graphite passivation and faster Li+ diffusion crossing the SEI, fluoroethylene carbonate (FEC) can help build up a thin and fluorinated SEI and reinforce the XFC cycling stability of graphite||NMC622 full cells (3.0 mAh cm−2; N/P ratio = 1.1), exhibiting 94.3% capacity retention over 500 cycles under a 10-min charging condition. The excellent XFC performance is practically validated using a 1.2-Ah pouch cell, demonstrating three times higher capacity retention over 200 cycles while suppressing Li plating-triggered cell swelling compared to conventional electrolytes. Unraveling the cell polarization governed by electrolyte chemistry provides valuable insights regarding future electrolyte designs for improving the XFC capabilities of Li-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI