Covalent Immobilization of Yeast Alcohol Dehydrogenase on an Amine-Functionalized Polymeric Resin Enhances Stability for Furfural Hydrogenation to Furfuryl Alcohol Using Ethanol as the Terminal Reductant

化学 糠醇 糠醛 热重分析 胺气处理 固定化酶 有机化学 戊二醛 催化作用 生物催化 反应机理
作者
Victor K. Sharma,Thomas Binder,Alan M. Allgeier
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (43): 17604-17615 被引量:5
标识
DOI:10.1021/acs.iecr.3c02526
摘要

Biocatalytic processes could be highly beneficial for valorizing biomass-derived chemicals to support a circular bioeconomy. Intrinsic stability-related challenges with enzymes have often been remediated using enzyme immobilization techniques that enhance the enzymes' stability by reducing inhibition and facilitating recycling and reuse. A covalent bonding strategy using glutaraldehyde as a cross-linker on a primary amine-functionalized polymeric resin was utilized in this study for immobilizing yeast alcohol dehydrogenase (YADH) for coupled ethanol oxidation and furfural reduction. It was demonstrated that the capping of residual amine moieties on the support was critical to avoiding yield loss during the reaction, and furfural is a competent capping reagent. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen physisorption, and scanning electron microscopy studies confirmed the successful functionalization of the resin and the YADH immobilization. A residual activity study demonstrated 94% activity retention after 20 cycles. Fed-batch and repeated-batch experiments over 48 h demonstrated excellent reusability, three times higher longevity, and four times higher substrate consumption for the immobilized YADH toward catalysis of ethanol-dependent furfural reduction to furfuryl alcohol compared to soluble YADH. The effects of internal and external mass transport limitations on the immobilized-enzyme-catalyzed reaction were also investigated and mitigated through process design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
You完成签到,获得积分10
刚刚
Jasper应助Ann采纳,获得10
1秒前
优秀的琦完成签到,获得积分20
1秒前
现实的小馒头完成签到,获得积分10
1秒前
jiujiujiuo发布了新的文献求助10
2秒前
充电宝应助大大采纳,获得10
2秒前
忆仙姿完成签到,获得积分10
2秒前
raffia完成签到,获得积分10
2秒前
2秒前
Olsters发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
emmaguo713发布了新的文献求助30
6秒前
wangmaosen发布了新的文献求助10
7秒前
星辰大海应助DZQ采纳,获得10
7秒前
raffia发布了新的文献求助10
7秒前
共享精神应助龙1采纳,获得10
9秒前
9秒前
凯七完成签到,获得积分10
9秒前
10秒前
圣甲虫完成签到 ,获得积分10
10秒前
邢寻冬发布了新的文献求助10
10秒前
淡然的寒烟完成签到,获得积分20
10秒前
自由语柳发布了新的文献求助10
10秒前
嘻嘻嘻完成签到,获得积分10
12秒前
阿東完成签到 ,获得积分10
12秒前
徐蝶发布了新的文献求助10
13秒前
李健应助快乐小狗采纳,获得10
14秒前
idemipere完成签到,获得积分10
15秒前
kirirto完成签到,获得积分10
16秒前
16秒前
美好嘉熙完成签到,获得积分10
16秒前
JamesPei应助raffia采纳,获得10
17秒前
万能图书馆应助小木土采纳,获得10
17秒前
17秒前
老肥完成签到,获得积分20
18秒前
18秒前
Una发布了新的文献求助10
18秒前
不懈奋进应助炙热芹菜采纳,获得30
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961