Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition

材料科学 化学气相沉积 X射线光电子能谱 化学工程 薄膜 拉曼光谱 结晶度 聚合物 微晶 纳米技术 复合材料 光学 物理 工程类 冶金
作者
Jeremy P. Daum,Alec Ajnsztajn,Sathvik Ajay Iyengar,Jacob H. Lowenstein,Soumyabrata Roy,Guanhui Gao,Esther H. R. Tsai,Pulickel M. Ajayan,Rafael Verduzco
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (21): 21411-21419 被引量:17
标识
DOI:10.1021/acsnano.3c06142
摘要

Covalent organic frameworks (COFs) are a promising class of crystalline polymer networks that are useful due to their high porosity, versatile functionality, and tunable architecture. Conventional solution-based methods of producing COFs are marred by slow reactions that produce powders that are difficult to process into adaptable form factors for functional applications, and there is a need for facile and fast synthesis techniques for making crystalline and ordered covalent organic framework (COF) thin films. In this work, we report a chemical vapor deposition (CVD) approach utilizing co-evaporation of two monomers onto a heated substrate to produce highly crystalline, defect-free COF films and coatings with hydrazone, imine, and ketoenamine COF linkages. This all-in-one synthesis technique produces highly crystalline, 40 nm-1 μm-thick COF films on Si/SiO2 substrates in less than 30 min. Crystallinity and alignment were proven by using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and transmission electron microscopy (TEM), and successful conversion of the monomers to produce the target COF was supported by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis measurements. Additionally, we used atomic force microscopy (AFM) to investigate the growth mechanisms of these films, showing the coalescence of triangular crystallites into a smooth film. To show the wide applicability and scope of the CVD process, we also prepared crystalline ordered COF films with imine and ketoenamine linkages. These films show potential as high-quality size exclusion membranes, catalytic platforms, and organic transistors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强亦丝应助跳跃采纳,获得10
刚刚
英俊的铭应助cc采纳,获得10
刚刚
huangsan完成签到,获得积分10
刚刚
匹诺曹完成签到,获得积分10
刚刚
1秒前
华仔应助进取拼搏采纳,获得10
1秒前
2秒前
dingdong发布了新的文献求助10
2秒前
you完成签到 ,获得积分10
3秒前
qwf完成签到 ,获得积分10
3秒前
4秒前
万能图书馆应助一一采纳,获得10
4秒前
执着跳跳糖完成签到 ,获得积分10
5秒前
阳yang完成签到,获得积分10
5秒前
牛头人完成签到,获得积分10
5秒前
6秒前
Rrr发布了新的文献求助10
6秒前
7秒前
7秒前
serenity完成签到 ,获得积分10
7秒前
Benliu完成签到,获得积分10
7秒前
csq发布了新的文献求助10
8秒前
9秒前
Hello应助外向的醉易采纳,获得10
9秒前
DWWWDAADAD完成签到,获得积分10
12秒前
科研通AI5应助一天八杯水采纳,获得10
13秒前
杨大仙儿完成签到 ,获得积分10
13秒前
15秒前
坚强的广山应助木头人采纳,获得200
15秒前
嘻哈学习完成签到,获得积分10
15秒前
15秒前
15秒前
ying完成签到,获得积分10
16秒前
16秒前
虚幻白玉完成签到,获得积分10
17秒前
安静的孤萍完成签到,获得积分10
18秒前
18秒前
lyz666发布了新的文献求助10
18秒前
liuxl发布了新的文献求助10
19秒前
smile完成签到,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808