Detecting stressful older adults-environment interactions to improve neighbourhood mobility: A multimodal physiological sensing, machine learning, and risk hotspot analysis-based approach

热点(地质) 可穿戴计算机 计算机科学 全球定位系统 人工智能 机器学习 地球物理学 电信 地质学 嵌入式系统
作者
Alex Torku,Albert P.C. Chan,Esther H.K. Yung,JoonOh Seo
出处
期刊:Building and Environment [Elsevier BV]
卷期号:224: 109533-109533 被引量:2
标识
DOI:10.1016/j.buildenv.2022.109533
摘要

Not only is the global population ageing, but also the built environment infrastructure in many cities and communities are approaching their design life or showing significant deterioration. Such built environment conditions often become an environmental barrier that can either cause stress and/or limit the mobility of older adults in their neighbourhood. Current approaches to detecting stressful environmental interactions are less effective in terms of time, cost, labour, and individual stress detection. This study harnesses the recent advances in wearable sensing technologies, machine learning intelligence and hotspot analysis to develop and test a more efficient approach to detecting older adults' stressful interactions with the environment. Specifically, this study monitored older adults' physiological reactions (Photoplethysmogram and electrodermal activity) and global positioning system (GPS) trajectory using wearable sensors during an outdoor walk. Machine learning algorithms, including Gaussian Support Vector Machine, Ensemble bagged tree, and deep belief network were trained and tested to detect older adults' stressful interactions from their physiological signals, location and environmental data. The Ensemble bagged tree achieved the best performance (98.25% accuracy). The detected stressful interactions were geospatially referenced to the GPS data, and locations with high-risk clusters of stressful interactions were detected as risk stress hotspots for older adults. The detected risk stress hotspot locations corresponded to the places the older adults encountered environmental barriers, supported by site inspections, interviews and video records. The findings of this study will facilitate a near real-time assessment of the outdoor neighbourhood environment, hence improving the age-friendliness of cities and communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy1693207859完成签到,获得积分10
3秒前
ppxx发布了新的文献求助10
4秒前
南风似潇应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
Liuzihao应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
7秒前
隐形曼青应助科研通管家采纳,获得30
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
8秒前
NexusExplorer应助科研通管家采纳,获得20
8秒前
南风似潇应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
大知闲闲发布了新的文献求助30
9秒前
wenlin完成签到,获得积分10
9秒前
小蘑菇应助陈龙采纳,获得200
10秒前
邓炎林发布了新的文献求助20
11秒前
12秒前
小二郎应助路人丨安采纳,获得10
13秒前
guangshuang发布了新的文献求助10
13秒前
qxx完成签到,获得积分10
13秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
14秒前
云竹丶完成签到,获得积分10
16秒前
乐观的小鸡完成签到,获得积分10
17秒前
刺客发布了新的文献求助10
18秒前
20秒前
20秒前
zxm完成签到,获得积分10
21秒前
调皮汽车完成签到 ,获得积分10
23秒前
ceeray23应助沫荔采纳,获得10
24秒前
Jack完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356