Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer

蘑菇 深度学习 食品安全 蘑菇中毒 人工智能 计算机科学 机器学习 生物 食品科学
作者
Boyuan Wang
出处
期刊:Journal of Food Quality [Hindawi Limited]
卷期号:2022: 1-11
标识
DOI:10.1155/2022/1173102
摘要

Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming wild mushrooms. Thousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32 using the t-distributed stochastic neighbor embedding (t-SNE) method. The results show that ViT-L/32 is the best on the testing dataset, with an accuracy score of 95.97%. These results surpass previous approaches in reducing intraclass variability and generating well-separated feature embeddings. The proposed method is a promising deep learning model capable of automatically classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and preventing public health incidents of food poisoning. The results will offer valuable resources for food scientists, nutritionists, and the public health sector regarding the safety and quality of mushrooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远山完成签到 ,获得积分10
1秒前
lucky完成签到,获得积分10
2秒前
3秒前
xiaojiahuo完成签到,获得积分10
3秒前
安的沛白完成签到,获得积分10
3秒前
4秒前
轩天发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
李爱国应助bonnie采纳,获得10
4秒前
5秒前
天天文献我爱看完成签到,获得积分10
5秒前
李健应助夏小胖采纳,获得10
5秒前
5秒前
reegdsgsfd发布了新的文献求助10
5秒前
绝不延毕完成签到 ,获得积分10
5秒前
Jane发布了新的文献求助10
6秒前
xu给irie的求助进行了留言
6秒前
6秒前
Owen应助阳佟若剑采纳,获得10
6秒前
英姑应助韩小花采纳,获得10
7秒前
WWX完成签到,获得积分10
7秒前
8秒前
8秒前
852应助xiuuu采纳,获得10
9秒前
仙鹤草完成签到,获得积分20
9秒前
鲤跃发布了新的文献求助10
10秒前
10秒前
丘比特应助sunliyan采纳,获得10
11秒前
zzdd发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
和谐青柏应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
niNe3YUE应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5631998
求助须知:如何正确求助?哪些是违规求助? 4726120
关于积分的说明 14980908
捐赠科研通 4790001
什么是DOI,文献DOI怎么找? 2558096
邀请新用户注册赠送积分活动 1518566
关于科研通互助平台的介绍 1479034