Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer

蘑菇 深度学习 食品安全 蘑菇中毒 人工智能 计算机科学 机器学习 生物 食品科学
作者
Boyuan Wang
出处
期刊:Journal of Food Quality [Hindawi Limited]
卷期号:2022: 1-11
标识
DOI:10.1155/2022/1173102
摘要

Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming wild mushrooms. Thousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32 using the t-distributed stochastic neighbor embedding (t-SNE) method. The results show that ViT-L/32 is the best on the testing dataset, with an accuracy score of 95.97%. These results surpass previous approaches in reducing intraclass variability and generating well-separated feature embeddings. The proposed method is a promising deep learning model capable of automatically classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and preventing public health incidents of food poisoning. The results will offer valuable resources for food scientists, nutritionists, and the public health sector regarding the safety and quality of mushrooms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你hao发布了新的文献求助10
1秒前
Mint发布了新的文献求助10
1秒前
alpv完成签到,获得积分10
1秒前
2秒前
luodaxia应助cach采纳,获得10
2秒前
Kiki发布了新的文献求助10
2秒前
Ricardo发布了新的文献求助30
3秒前
魔幻的莺完成签到,获得积分10
3秒前
大图图完成签到,获得积分10
3秒前
4秒前
吃书的猪完成签到,获得积分10
5秒前
gds完成签到,获得积分10
6秒前
小二郎应助huang采纳,获得10
6秒前
隐形曼青应助hwljkby采纳,获得10
7秒前
WELXCNK完成签到,获得积分10
7秒前
英姑应助魔幻的莺采纳,获得10
8秒前
ll发布了新的文献求助10
9秒前
9秒前
10秒前
Fryanto发布了新的文献求助10
10秒前
隐形曼青应助健忘曼彤采纳,获得10
11秒前
11秒前
12秒前
12秒前
14秒前
14秒前
斯文败类应助唠叨的宝马采纳,获得10
14秒前
哈哈哈哈完成签到,获得积分20
16秒前
16秒前
Mark发布了新的文献求助10
16秒前
Robin发布了新的文献求助10
17秒前
SevenKing发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
18秒前
Fryanto完成签到,获得积分10
19秒前
瑶瑶乐发布了新的文献求助10
19秒前
Kiki完成签到 ,获得积分20
19秒前
DE2022发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585