Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer

蘑菇 深度学习 食品安全 蘑菇中毒 人工智能 计算机科学 机器学习 生物 食品科学
作者
Boyuan Wang
出处
期刊:Journal of Food Quality [Hindawi Limited]
卷期号:2022: 1-11
标识
DOI:10.1155/2022/1173102
摘要

Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming wild mushrooms. Thousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32 using the t-distributed stochastic neighbor embedding (t-SNE) method. The results show that ViT-L/32 is the best on the testing dataset, with an accuracy score of 95.97%. These results surpass previous approaches in reducing intraclass variability and generating well-separated feature embeddings. The proposed method is a promising deep learning model capable of automatically classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and preventing public health incidents of food poisoning. The results will offer valuable resources for food scientists, nutritionists, and the public health sector regarding the safety and quality of mushrooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nature2号完成签到 ,获得积分10
刚刚
Petrichor完成签到,获得积分10
刚刚
卷芽大王完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
万能图书馆应助xmy采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
729完成签到,获得积分10
4秒前
灵巧冰露发布了新的文献求助30
4秒前
lin完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
7秒前
陈陈陈发布了新的文献求助10
7秒前
8秒前
xiaoliu发布了新的文献求助10
8秒前
10秒前
10秒前
piggy发布了新的文献求助10
11秒前
11秒前
张北北完成签到,获得积分10
11秒前
liying发布了新的文献求助30
11秒前
昂莫达完成签到,获得积分10
11秒前
豆子发布了新的文献求助10
11秒前
LucyLi发布了新的文献求助10
12秒前
tcf发布了新的文献求助10
12秒前
jmy发布了新的文献求助30
12秒前
莱德完成签到,获得积分10
12秒前
13秒前
14秒前
傻呵呵发布了新的文献求助20
14秒前
14秒前
领导范儿应助淮山五加皮采纳,获得10
14秒前
14秒前
14秒前
李健应助沟通亿心采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379