Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer

蘑菇 深度学习 食品安全 蘑菇中毒 人工智能 计算机科学 机器学习 生物 食品科学
作者
Boyuan Wang
出处
期刊:Journal of Food Quality [Hindawi Limited]
卷期号:2022: 1-11
标识
DOI:10.1155/2022/1173102
摘要

Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming wild mushrooms. Thousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32 using the t-distributed stochastic neighbor embedding (t-SNE) method. The results show that ViT-L/32 is the best on the testing dataset, with an accuracy score of 95.97%. These results surpass previous approaches in reducing intraclass variability and generating well-separated feature embeddings. The proposed method is a promising deep learning model capable of automatically classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and preventing public health incidents of food poisoning. The results will offer valuable resources for food scientists, nutritionists, and the public health sector regarding the safety and quality of mushrooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的玉兰完成签到,获得积分20
刚刚
刚刚
核桃应助sam采纳,获得30
1秒前
研友_VZG7GZ应助YLY采纳,获得10
1秒前
1秒前
AdamJie发布了新的文献求助10
1秒前
NexusExplorer应助欣喜代秋采纳,获得10
2秒前
2秒前
3秒前
3秒前
666发布了新的文献求助10
3秒前
ASDS完成签到,获得积分10
3秒前
赘婿应助111采纳,获得10
3秒前
3秒前
4秒前
Trace2023发布了新的文献求助10
4秒前
5秒前
斯文败类应助缓慢的饼干采纳,获得10
5秒前
5秒前
6秒前
搜集达人应助无辜丹翠采纳,获得10
6秒前
6秒前
NexusExplorer应助可可采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
archeologist完成签到,获得积分10
7秒前
香蕉觅云应助MXL采纳,获得10
7秒前
7秒前
白子双完成签到,获得积分10
7秒前
7秒前
8秒前
kk酱完成签到,获得积分10
8秒前
花砸发布了新的文献求助10
8秒前
Leo完成签到,获得积分10
8秒前
何香稳发布了新的文献求助10
8秒前
李婷发布了新的文献求助10
9秒前
浮游应助超超采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707