Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae

斑马鱼 生物 污染物 人工智能 计算机科学 生态学 遗传学 基因
作者
Gongqing Dong,Nan Wang,Ting Xu,Jingyu Liang,Ruxia Qiao,Daqiang Yin,Sijie Lin
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18127-18138 被引量:13
标识
DOI:10.1021/acs.est.3c00593
摘要

Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
逍遥完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
待定完成签到 ,获得积分10
2秒前
Orange应助一只小羊采纳,获得10
2秒前
打打应助小明同学采纳,获得10
3秒前
kylooe415完成签到,获得积分10
3秒前
3秒前
4秒前
汪汪发布了新的文献求助10
5秒前
合适的健柏完成签到,获得积分10
5秒前
6秒前
绺妙发布了新的文献求助10
7秒前
7秒前
佘同学发布了新的文献求助10
8秒前
华仔应助张不大采纳,获得10
9秒前
七凌发布了新的文献求助10
10秒前
领导范儿应助000采纳,获得10
10秒前
动漫大师发布了新的文献求助10
11秒前
11秒前
小张完成签到,获得积分10
12秒前
12秒前
尹博士完成签到,获得积分10
13秒前
七凌完成签到,获得积分10
15秒前
ky幻影完成签到,获得积分10
15秒前
小明同学发布了新的文献求助10
16秒前
一只小羊完成签到,获得积分10
16秒前
NexusExplorer应助佘同学采纳,获得10
17秒前
18秒前
su完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814