双极扩散
量子产额
苝
光致发光
材料科学
电致发光
有机半导体
蒽
半导体
量子效率
光电子学
电子迁移率
光化学
有机发光二极管
产量(工程)
电子
化学
荧光
纳米技术
有机化学
光学
物理
分子
图层(电子)
量子力学
冶金
作者
Liangliang Chen,Zhengsheng Qin,Han Huang,Jing Zhang,Zheng Yin,Xiaobo Yu,Xi‐sha Zhang,Cheng Li,Guanxin Zhang,Miaofei Huang,Huanli Dong,Yuanping Yi,Lang Jiang,Hongbing Fu,Deqing Zhang
标识
DOI:10.1002/advs.202300530
摘要
Abstract Emissive organic semiconductors are highly demanding for organic light‐emitting transistors (OLETs) and electrically pumped organic lasers (EPOLs). However, it remains a great challenge to obtain organic semiconductors with high carrier mobility and high photoluminescence quantum yield simultaneously. Here, a new design strategy is reported for highly emissive ambipolar and even n‐type semiconductors by introducing perfluorophenyl groups into polycyclic aromatic hydrocarbons such as perylene and anthracene. The results reveal that 3,9‐diperfluorophenyl perylene ( 5FDPP ) exhibits the ambipolar semiconducting property with hole and electron mobilities up to 0.12 and 1.89 cm 2 V −1 s −1 , and a photoluminescence quantum yield of 55%. One of the crystal forms of 5FDPA exhibits blue emission with an emission quantum yield of 52% and simultaneously shows the n‐type semiconducting property with an electron mobility up to 2.65 cm 2 V −1 s −1 , which is the highest value among the reported organic emissive n‐type semiconductors. Furthermore, crystals of 5FDPP are utilized to fabricate OLETs by using Ag as source–drain electrodes. The electroluminescence is detected in the transporting channels with an external quantum efficiency (EQE) of up to 2.2%, and the current density is up to 145 kA cm −2 , which are among the highest values for single‐component OLETs with symmetric electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI