A real-time semantic segmentation model using iteratively shared features in multiple sub-encoders

计算机科学 分割 编码器 特征(语言学) 人工智能 背景(考古学) 模式识别(心理学) 语义特征 古生物学 操作系统 生物 语言学 哲学
作者
Tanmay Singha,Duc-Son Pham,Aneesh Krishna
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:140: 109557-109557 被引量:15
标识
DOI:10.1016/j.patcog.2023.109557
摘要

Recent studies show a significant growth in semantic segmentation. However, many semantic segmentation models still have a large number of parameters, making them unsuitable for resource-constrained embedded devices. To address this issue, we propose an efficient Shared Feature Reuse Segmentation (SFRSeg) model containing several novelties: a new yet effective shared-branch multiple sub-encoders design, a context mining module and a semantic aggregating module for better context granularity. In particular, our shared-branch approach improves the entire feature hierarchy by sharing the spatial and context knowledge in both shallow and deep branches. After every shared point in each sub-encoder, a proposed cascading context mining (CCM) module is deployed to filter out the noisy spatial details from the feature maps and provides a diverse size of receptive fields for capturing the latent context between multi-scale geometric shapes in the scene. To overcome the gradient vanishing issue at the early stage, we reduce the number of layers in the first sub-encoder and employ a unique multiple sub-encoders design which reprocesses the rich global feature maps through multiple sub-encoders for better feature refinement. Later, the rich semantic features generated by the efficient sub-encoders at different levels are fused by the proposed Hybrid Path Attention Semantic Aggregation (HPA-SA) module that effectively reduces the semantic gap between feature maps at different levels and alleviate the well-known boundary degeneration effect. To make it computationally efficient for resource-constrained embedded devices, a series of lightweight methods such as a lightweight encoder, a squeeze-and-excitation design, separable convolution filters, channel reduction (CR) are carefully exploited. With an exceptional performance on Cityscapes (70.6% test mIoU) and CamVid (74.7% test mIoU) data sets, the proposed model is shown to be superior over existing light real-time semantic segmentation models whilst having only 1.6 million parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Michael发布了新的文献求助10
3秒前
踏实无敌应助夏夏采纳,获得20
3秒前
3秒前
晚风吹人醒啊完成签到 ,获得积分10
4秒前
cTiyAmo完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
白大褂发布了新的文献求助10
6秒前
鹿茸与共发布了新的文献求助10
8秒前
没钥匙的锁完成签到,获得积分10
10秒前
12秒前
Yang22完成签到,获得积分10
13秒前
赘婿应助大布采纳,获得20
13秒前
淦胜坤完成签到,获得积分10
14秒前
天天快乐应助踏实乌冬面采纳,获得30
21秒前
非而者厚应助独特鸵鸟采纳,获得10
22秒前
吖吖完成签到,获得积分10
23秒前
23秒前
鱼日完成签到,获得积分10
24秒前
阿童木完成签到,获得积分10
26秒前
26秒前
nimonimo完成签到,获得积分10
26秒前
last炫神丶发布了新的文献求助150
26秒前
如沐风完成签到,获得积分20
27秒前
27秒前
鱼日发布了新的文献求助10
28秒前
28秒前
liang完成签到 ,获得积分10
28秒前
知道发布了新的文献求助10
29秒前
bkagyin应助fan采纳,获得10
29秒前
123666完成签到,获得积分10
29秒前
俭朴的沛柔完成签到,获得积分10
29秒前
Owen应助sirf采纳,获得10
30秒前
如沐风发布了新的文献求助10
30秒前
lxb完成签到,获得积分10
31秒前
32秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744815
求助须知:如何正确求助?哪些是违规求助? 3287794
关于积分的说明 10055264
捐赠科研通 3003983
什么是DOI,文献DOI怎么找? 1649286
邀请新用户注册赠送积分活动 785261
科研通“疑难数据库(出版商)”最低求助积分说明 750960