Detecting and testing multiple change points in distributions of damage-sensitive feature data for data-driven structural condition assessment: A distributional time series change-point analytic approach

变更检测 结构健康监测 非参数统计 特征(语言学) 计算机科学 系列(地层学) 概率密度函数 数据挖掘 特征向量 概率分布 光学(聚焦) 数据点 模式识别(心理学) 算法 数学 人工智能 统计 工程类 结构工程 古生物学 语言学 哲学 物理 光学 生物
作者
Xinyi Lei,Zhicheng Chen,Hui Li,Shiyin Wei
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110344-110344 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110344
摘要

Structural change detection is a core component of structural health monitoring (SHM). One appealing aspect of SHM is that structural changes can be detected by detecting the changes in extracted damage-sensitive features (DSFs). The feature changes of the data are usually attributed to the changes of the underlying distributions; thus, developing reliable change-point detectors for automatically detecting and testing various potential changes in the distributions of DSF data are particularly beneficial for automatic structural health diagnosis. However, methodological researches devoted to detecting change points for probability distributions are rare either in statistics or engineering literature, and state-of-the-art approaches mainly focus on single change-point detection and have restrictive assumptions on the distributions or the types of change points. This motivates us to develop a more flexible multiple change-point detection method for the distributions of DSF data employed for data-driven structural condition assessment. To accommodate a large dataset, the DSF data are summarized by a distributional time series that consists of probability density functions (PDFs) estimated from blocks of DSF data. Then, detecting the distributional changes for the massive DSF data can be phrased as detecting the changes in the resulting distributional time series with much less data objects. To overcome the obstacle that the PDF-valued data are special functional data residing in nonlinear abstract spaces, this study employs two transformations to convert the PDFs into more tractable vector spaces. Then, by using the linear structures possessed by the vector spaces, a nonparametric multiple change-point detection method is presented for the distributional time series based on the techniques of functional principal component analysis and E-Divisive data segmentation. The proposed method possesses various nice features, such as being capable for multiple change-point detection, having fewer restrictive assumptions and scalability to large datasets. Moreover, it also shows superiority in revealing the modes of distributional variations. An application to distributional change detection involved in cable condition assessment for a long-span cable-stayed bridge demonstrates the applicability and versatility of our proposal, and some interesting results are also discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左岸完成签到,获得积分10
刚刚
培乐多完成签到,获得积分10
1秒前
QJL完成签到,获得积分10
1秒前
崔文兴完成签到,获得积分20
1秒前
MFNM完成签到,获得积分10
1秒前
勤恳易真完成签到,获得积分10
2秒前
圈圈完成签到,获得积分10
2秒前
柠栀完成签到 ,获得积分10
3秒前
马麻薯完成签到,获得积分10
3秒前
子不语完成签到,获得积分10
3秒前
海带拳大力士完成签到,获得积分10
4秒前
Aiden完成签到,获得积分10
4秒前
菜鸡学VASP完成签到 ,获得积分10
5秒前
研友_8KX15L完成签到,获得积分10
6秒前
文静紫霜完成签到 ,获得积分10
7秒前
fuguier发布了新的文献求助10
7秒前
洛神之心1124完成签到,获得积分10
9秒前
9秒前
小马哥完成签到,获得积分10
10秒前
simple完成签到,获得积分10
10秒前
spenley完成签到,获得积分10
10秒前
Mcrcel应助佳丽采纳,获得10
10秒前
简单完成签到,获得积分10
10秒前
平常冬天完成签到,获得积分10
10秒前
阿和完成签到,获得积分10
11秒前
疯狂的绮山完成签到,获得积分10
11秒前
温暖的鸿完成签到 ,获得积分10
11秒前
传奇3应助超酷的柠檬采纳,获得10
13秒前
wenqing完成签到 ,获得积分10
14秒前
美丽易云完成签到 ,获得积分10
14秒前
流苏完成签到,获得积分10
15秒前
飞翔的蒲公英完成签到,获得积分10
15秒前
彳亍1117应助娇气的邑采纳,获得10
15秒前
16秒前
16秒前
Xtals完成签到,获得积分10
17秒前
羊羊羊完成签到,获得积分10
17秒前
Hrentiken完成签到,获得积分10
17秒前
summer完成签到 ,获得积分10
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565