亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

1D Gradient-Weighted Class Activation Mapping, Visualizing Decision Process of Convolutional Neural Network-Based Models in Spectroscopy Analysis

可视化 可解释性 卷积神经网络 人工智能 模式识别(心理学) 计算机科学 过程(计算) 特征(语言学) 人工神经网络 化学 哲学 语言学 操作系统
作者
Guo-yang Shi,Hao-Ping Wu,Siheng Luo,Xinyu Lu,Bin Ren,Qian Zhang,Wei‐Qi Lin,R Chen,Ping Guo,Huabin Chen,Zhong‐Qun Tian,Guifang Shao,Yang Liu,Guokun Liu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (26): 9959-9966 被引量:15
标识
DOI:10.1021/acs.analchem.3c01101
摘要

Being characterized by the self-adaption and high accuracy, the deep learning-based models have been widely applied in the 1D spectroscopy-related field. However, the "black-box" operation and "end-to-end" working style of the deep learning normally bring the low interpretability, where a reliable visualization is highly demanded. Although there are some well-developed visualization methods, such as Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM), for the 2D image data, they cannot correctly reflect the weights of the model when being applied to the 1D spectral data, where the importance of position information is not considered. Here, aiming at the visualization of Convolutional Neural Network-based models toward the qualitative and quantitative analysis of 1D spectroscopy, we developed a novel visualization algorithm (1D Grad-CAM) to more accurately display the decision-making process of the CNN-based models. Different from the classical Grad-CAM, with the removal of the gradient averaging (GAP) and the ReLU operations, a significantly improved correlation between the gradient and the spectral location and a more comprehensive spectral feature capture were realized for 1D Grad-CAM. Furthermore, the introduction of difference (purity or linearity) and feature contribute in the CNN output in 1D Grad-CAM achieved a reliable evaluation of the qualitative accuracy and quantitative precision of CNN-based models. Facing the qualitative and adulteration quantitative analysis of vegetable oils by the combination of Raman spectroscopy and ResNet, the visualization by 1D Grad-CAM well reflected the origin of the high accuracy and precision brought by ResNet. In general, 1D Grad-CAM provides a clear vision about the judgment criterion of CNN and paves the way for CNN to a broad application in the field of 1D spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
科研螺丝完成签到 ,获得积分10
19秒前
scdd完成签到 ,获得积分10
19秒前
居蓝完成签到 ,获得积分10
41秒前
49秒前
terryok完成签到 ,获得积分10
50秒前
Yuanyuan发布了新的文献求助20
50秒前
IF100000发布了新的文献求助30
56秒前
1分钟前
王某人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
羊羊发布了新的文献求助10
1分钟前
1分钟前
FashionBoy应助羊羊采纳,获得30
1分钟前
搞科研的小李同学完成签到,获得积分10
1分钟前
俏皮的凝荷完成签到,获得积分20
1分钟前
听闻墨笙完成签到 ,获得积分10
1分钟前
bkagyin应助Zhoey采纳,获得10
1分钟前
jokerhoney完成签到,获得积分10
1分钟前
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Zhoey发布了新的文献求助10
2分钟前
大个应助悲凉的婴采纳,获得10
2分钟前
AireenBeryl531完成签到,获得积分0
2分钟前
悲凉的婴完成签到 ,获得积分10
2分钟前
WerWu完成签到,获得积分10
3分钟前
3分钟前
乐乐发布了新的文献求助10
3分钟前
今后应助研友_LwX5Kn采纳,获得10
3分钟前
Krim完成签到 ,获得积分10
3分钟前
科研通AI5应助乐乐采纳,获得10
3分钟前
我是老大应助moyueeer采纳,获得10
3分钟前
完美世界应助饵丝拌辣酱采纳,获得10
3分钟前
3分钟前
研友_LwX5Kn发布了新的文献求助10
3分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725299
求助须知:如何正确求助?哪些是违规求助? 3270317
关于积分的说明 9965480
捐赠科研通 2985324
什么是DOI,文献DOI怎么找? 1637875
邀请新用户注册赠送积分活动 777746
科研通“疑难数据库(出版商)”最低求助积分说明 747186