A shallow mirror transformer for subject-independent motor imagery BCI

运动表象 脑-机接口 判别式 计算机科学 脑电图 人工智能 变压器 语音识别 模式识别(心理学) 可视化 心理学 工程类 神经科学 电压 电气工程
作者
Jing Luo,Yaojie Wang,S.-L. Xia,Na Lu,Xiaoyong Ren,Zhenghao Shi,Xinhong Hei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107254-107254 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107254
摘要

Motor imagery BCI plays an increasingly important role in motor disorders rehabilitation. However, the position and duration of the discriminative segment in an EEG trial vary from subject to subject and even trial to trial, and this leads to poor performance of subject-independent motor imagery classification. Thus, determining how to detect and utilize the discriminative signal segments is crucial for improving the performance of subject-independent motor imagery BCI.In this paper, a shallow mirror transformer is proposed for subject-independent motor imagery EEG classification. Specifically, a multihead self-attention layer with a global receptive field is employed to detect and utilize the discriminative segment from the entire input EEG trial. Furthermore, the mirror EEG signal and the mirror network structure are constructed to improve the classification precision based on ensemble learning. Finally, the subject-independent setup was used to evaluate the shallow mirror transformer on motor imagery EEG signals from subjects existing in the training set and new subjects.The experiments results on BCI Competition IV datasets 2a and 2b and the OpenBMI dataset demonstrated the promising effectiveness of the proposed shallow mirror transformer. The shallow mirror transformer obtained average accuracies of 74.48% and 76.1% for new subjects and existing subjects, respectively, which were highest among the compared state-of-the-art methods. In addition, visualization of the attention score showed the ability of discriminative EEG segment detection. This paper demonstrated that multihead self-attention is effective in capturing global EEG signal information in motor imagery classification.This study provides an effective model based on a multihead self-attention layer for subject-independent motor imagery-based BCIs. To the best of our knowledge, this is the shallowest transformer model available, in which a small number of parameters promotes the performance in motor imagery EEG classification for such a small sample problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYT完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
魏伯安发布了新的文献求助10
5秒前
5秒前
zhouleiwang完成签到,获得积分10
6秒前
李爱国应助aiming采纳,获得10
7秒前
无奈傲菡完成签到,获得积分10
8秒前
TT发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
9秒前
sun发布了新的文献求助10
10秒前
荣荣完成签到,获得积分10
10秒前
11秒前
小安完成签到,获得积分10
12秒前
Spencer完成签到 ,获得积分10
12秒前
PengHu完成签到,获得积分10
13秒前
13秒前
15秒前
17秒前
17秒前
17秒前
ywang发布了新的文献求助10
18秒前
失眠虔纹完成签到,获得积分10
18秒前
斯文败类应助nextconnie采纳,获得10
18秒前
药学牛马发布了新的文献求助10
22秒前
22秒前
23秒前
26秒前
张无缺完成签到,获得积分10
29秒前
31秒前
CodeCraft应助MES采纳,获得10
32秒前
笨笨乘风完成签到,获得积分10
33秒前
田様应助axunQAQ采纳,获得10
35秒前
完美秋烟发布了新的文献求助10
35秒前
无花果应助糊涂的小伙采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849