Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction

计算机科学 有用性 杠杆(统计) 客户参与度 深度学习 机器学习 数据科学 集合(抽象数据类型) 人工智能 万维网 社会化媒体 心理学 社会心理学 程序设计语言
作者
Gang Chen,Lihua Huang,Shuaiyong Xiao,Chenghong Zhang,Huimin Zhao
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (2): 829-849 被引量:10
标识
DOI:10.1287/isre.2021.0292
摘要

Review helpfulness has been measured commonly relying on quantitative indicators at the review level. Helpful reviews qualified by such simple indicators, however, may not necessarily yield accurate sales predictions, owing to the ever-evolving review information quality, customer demand, and product attributes. Positing that reviews with higher customer attention should be more influential to customers’ purchase intention and product sales, we propose to leverage customer attention to better realize the potential of multimodal reviews for sales prediction. We conceptualize customer attention at the holistic review set, review subset, individual review, and review element levels, respectively, and induce four indicators of customer attention, that is, timeliness, semantic diversity, voting-awareness, and varying multimodal interaction. We then propose a novel deep learning method, which incorporates these customer attention indicators using neural network attention mechanisms specifically designed for multimodal-review-based sales prediction. Empirical evaluation based on a large data set in a case study predicting hotel sales (specifically, monthly occupancy rate) shows that, in terms of both prediction performance and representation learning performance, our proposed method outperformed benchmarked state-of-the-art deep learning methods. As multimodal reviews become increasingly prevalent, this method serves as a tool for adequately leveraging such multimodal data to support business decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助张火火采纳,获得10
刚刚
yyyyyy完成签到 ,获得积分10
1秒前
小二郎应助zz采纳,获得10
1秒前
乐观的沛岚完成签到,获得积分10
2秒前
sutychen完成签到,获得积分20
2秒前
嘻嘻桃完成签到,获得积分10
2秒前
march完成签到,获得积分20
3秒前
烟熏柿子完成签到,获得积分20
3秒前
高宇航完成签到,获得积分20
3秒前
3秒前
安诺完成签到,获得积分10
4秒前
汉堡包应助参宿七采纳,获得10
4秒前
Ava应助遇见采纳,获得10
4秒前
4秒前
曾经如风完成签到,获得积分10
4秒前
诗图完成签到,获得积分10
5秒前
Dobby完成签到,获得积分10
5秒前
6秒前
维生素CCC完成签到 ,获得积分10
7秒前
眯眯眼的慕蕊完成签到,获得积分10
7秒前
无花果应助中海采纳,获得10
7秒前
7秒前
情怀应助XCL采纳,获得10
7秒前
8秒前
身强力壮运气好完成签到,获得积分10
8秒前
我是老大应助sutychen采纳,获得10
8秒前
个性的紫菜应助灯灯采纳,获得20
9秒前
jjyy发布了新的文献求助30
9秒前
酷酷妙梦发布了新的文献求助10
9秒前
Charon发布了新的文献求助10
9秒前
Whiaper完成签到,获得积分10
11秒前
爱听歌的糖豆完成签到,获得积分10
11秒前
douzi完成签到,获得积分10
12秒前
HarryYang完成签到 ,获得积分10
13秒前
元谷雪发布了新的文献求助10
14秒前
14秒前
小明完成签到,获得积分10
14秒前
14秒前
五十一笑声完成签到,获得积分10
15秒前
Zander完成签到,获得积分10
15秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384