亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction

计算机科学 有用性 杠杆(统计) 客户参与度 深度学习 机器学习 数据科学 集合(抽象数据类型) 人工智能 万维网 社会化媒体 心理学 社会心理学 程序设计语言
作者
Gang Chen,Lihua Huang,Shuaiyong Xiao,Chenghong Zhang,Huimin Zhao
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (2): 829-849 被引量:22
标识
DOI:10.1287/isre.2021.0292
摘要

Review helpfulness has been measured commonly relying on quantitative indicators at the review level. Helpful reviews qualified by such simple indicators, however, may not necessarily yield accurate sales predictions, owing to the ever-evolving review information quality, customer demand, and product attributes. Positing that reviews with higher customer attention should be more influential to customers’ purchase intention and product sales, we propose to leverage customer attention to better realize the potential of multimodal reviews for sales prediction. We conceptualize customer attention at the holistic review set, review subset, individual review, and review element levels, respectively, and induce four indicators of customer attention, that is, timeliness, semantic diversity, voting-awareness, and varying multimodal interaction. We then propose a novel deep learning method, which incorporates these customer attention indicators using neural network attention mechanisms specifically designed for multimodal-review-based sales prediction. Empirical evaluation based on a large data set in a case study predicting hotel sales (specifically, monthly occupancy rate) shows that, in terms of both prediction performance and representation learning performance, our proposed method outperformed benchmarked state-of-the-art deep learning methods. As multimodal reviews become increasingly prevalent, this method serves as a tool for adequately leveraging such multimodal data to support business decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spring完成签到,获得积分10
11秒前
11秒前
李爱国应助我不是很帅采纳,获得10
12秒前
41秒前
50秒前
54秒前
TvT发布了新的文献求助10
57秒前
传奇完成签到 ,获得积分10
1分钟前
1分钟前
xia完成签到,获得积分10
1分钟前
xia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
kyfbrahha完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Autumn发布了新的文献求助10
2分钟前
2分钟前
桐桐应助李小猫采纳,获得10
2分钟前
Akim应助Autumn采纳,获得10
2分钟前
2分钟前
栗子发布了新的文献求助10
2分钟前
李小猫完成签到,获得积分10
2分钟前
余味应助李小猫采纳,获得10
2分钟前
JamesPei应助不灭采纳,获得10
2分钟前
脑洞疼应助栗子采纳,获得10
2分钟前
2分钟前
李小猫发布了新的文献求助10
2分钟前
2分钟前
栗子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Manbo发布了新的文献求助30
3分钟前
Manbo完成签到,获得积分10
3分钟前
3分钟前
Sue完成签到 ,获得积分10
3分钟前
科研通AI5应助我不是很帅采纳,获得10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340578
关于积分的说明 10300672
捐赠科研通 3057121
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762517