Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation

增采样 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 联营 分割 哈尔小波转换 小波 小波变换 离散小波变换 图像(数学)
作者
Guoping Xu,Wentao Liao,Xuan Zhang,Chang Li,Xinwei He,Xinglong Wu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109819-109819 被引量:262
标识
DOI:10.1016/j.patcog.2023.109819
摘要

Downsampling operations such as max pooling or strided convolution are ubiquitously utilized in Convolutional Neural Networks (CNNs) to aggregate local features, enlarge receptive field, and minimize computational overhead. However, for a semantic segmentation task, pooling features over the local neighbourhood may result in the loss of important spatial information, which is conducive for pixel-wise predictions. To address this issue, we introduce a simple yet effective pooling operation called the Haar Wavelet-based Downsampling (HWD) module. This module can be easily integrated into CNNs to enhance the performance of semantic segmentation models. The core idea of HWD is to apply Haar wavelet transform for reducing the spatial resolution of feature maps while preserving as much information as possible. Furthermore, to investigate the benefits of HWD, we propose a novel metric, named as feature entropy index (FEI), which measures the degree of information uncertainty after downsampling in CNNs. Specifically, the FEI can be used to indicate the ability of downsampling methods to preserve essential information in semantic segmentation. Our comprehensive experiments demonstrate that the proposed HWD module could (1) effectively improve the segmentation performance across different modality image datasets with various CNN architectures, and (2) efficiently reduce information uncertainty compared to the conventional downsampling methods. Our implementation are available at https://github.com/apple1986/HWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助张鱼小丸子采纳,获得20
7秒前
mengli完成签到 ,获得积分10
11秒前
科研通AI6.1应助阿星捌采纳,获得10
14秒前
张鱼小丸子完成签到,获得积分10
15秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
SPARK应助科研通管家采纳,获得10
19秒前
SPARK应助科研通管家采纳,获得10
19秒前
SPARK应助科研通管家采纳,获得10
19秒前
乐乐应助Robin95采纳,获得30
23秒前
azzkmj发布了新的文献求助10
23秒前
费老五完成签到 ,获得积分10
23秒前
科研通AI6.2应助zyp采纳,获得10
25秒前
舒心的雍发布了新的文献求助10
27秒前
黙宇循光完成签到 ,获得积分10
27秒前
yhh完成签到,获得积分10
27秒前
仙兮熙完成签到 ,获得积分10
32秒前
u亩完成签到 ,获得积分10
32秒前
一眼完成签到,获得积分20
34秒前
34秒前
冬虫夏草完成签到,获得积分10
36秒前
zyp发布了新的文献求助10
40秒前
qweqwe完成签到,获得积分10
46秒前
53秒前
Banbor2021完成签到,获得积分10
54秒前
李_小_八完成签到,获得积分10
55秒前
咸鱼饭团完成签到,获得积分10
1分钟前
junzzz完成签到 ,获得积分10
1分钟前
84xed4完成签到 ,获得积分10
1分钟前
Yakamoz完成签到 ,获得积分10
1分钟前
慕青应助zyp采纳,获得10
1分钟前
Visiony完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466