Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation

增采样 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 联营 分割 哈尔小波转换 小波 小波变换 离散小波变换 图像(数学)
作者
Guoping Xu,Wentao Liao,Xuan Zhang,Chang Li,Xinwei He,Xinglong Wu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109819-109819 被引量:81
标识
DOI:10.1016/j.patcog.2023.109819
摘要

Downsampling operations such as max pooling or strided convolution are ubiquitously utilized in Convolutional Neural Networks (CNNs) to aggregate local features, enlarge receptive field, and minimize computational overhead. However, for a semantic segmentation task, pooling features over the local neighbourhood may result in the loss of important spatial information, which is conducive for pixel-wise predictions. To address this issue, we introduce a simple yet effective pooling operation called the Haar Wavelet-based Downsampling (HWD) module. This module can be easily integrated into CNNs to enhance the performance of semantic segmentation models. The core idea of HWD is to apply Haar wavelet transform for reducing the spatial resolution of feature maps while preserving as much information as possible. Furthermore, to investigate the benefits of HWD, we propose a novel metric, named as feature entropy index (FEI), which measures the degree of information uncertainty after downsampling in CNNs. Specifically, the FEI can be used to indicate the ability of downsampling methods to preserve essential information in semantic segmentation. Our comprehensive experiments demonstrate that the proposed HWD module could (1) effectively improve the segmentation performance across different modality image datasets with various CNN architectures, and (2) efficiently reduce information uncertainty compared to the conventional downsampling methods. Our implementation are available at https://github.com/apple1986/HWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wzzznh完成签到 ,获得积分10
2秒前
ZXT完成签到 ,获得积分10
5秒前
Orange应助陈冲采纳,获得10
5秒前
Ava应助研友_LwX5Kn采纳,获得10
5秒前
ZHC发布了新的文献求助10
5秒前
7秒前
酷波er应助张旭卓采纳,获得10
7秒前
江元亮完成签到,获得积分20
10秒前
邓红超完成签到 ,获得积分10
11秒前
11秒前
乐易天发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
11秒前
顺利向南发布了新的文献求助10
12秒前
12秒前
聪慧的凡灵应助tenure采纳,获得10
13秒前
天狗屯月完成签到,获得积分10
13秒前
jfc发布了新的文献求助10
13秒前
14秒前
19秒前
回忆lhy完成签到,获得积分10
19秒前
Eurus应助追寻寄灵采纳,获得10
20秒前
CipherSage应助缓慢的灵枫采纳,获得10
21秒前
ding应助痞老板采纳,获得10
21秒前
22秒前
蜡笔小新发布了新的文献求助10
22秒前
lcl完成签到,获得积分10
24秒前
李健应助科研小辣鸡采纳,获得10
24秒前
25秒前
sci完成签到,获得积分10
25秒前
25秒前
迷人问兰发布了新的文献求助10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
27秒前
小马甲应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350