Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat

合成 环境科学 土壤碳 表土 背景(考古学) 土壤图 植被(病理学) 遥感 归一化差异植被指数 数字土壤制图 土壤科学 土工试验 水文学(农业) 土壤水分 气候变化 地质学 计算机科学 海洋学 图像(数学) 病理 古生物学 人工智能 岩土工程 医学
作者
Simone Zepp,Uta Heiden,Martin Bachmann,Markus Möller,Martin Wiesmeier,Bas van Wesemael
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 287-302 被引量:8
标识
DOI:10.1016/j.isprsjprs.2023.06.003
摘要

Soil Organic Carbon (SOC) is amongst others an indicator for soil degradation and soil health of croplands. Induced by recent policy initiatives, awareness for high resolution SOC maps and techniques to estimate changes is increasing. For area-wide mapping approaches with at least a field resolution, Earth Observation is a valuable data source to extract bare soil areas and to quantify SOC contents for these areas. In this context, compositing techniques of multi-temporal image archives are widely used to overcome the limitation of vegetation cover of fields during the overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are of particular importance: 1) the index for bare soil selection and 2) the length of the compositing period for recurrent analyses. In this study, we applied the Soil Composite Mapping Processor (SCMaP) to the full archive of Landsat data between 2005 and 2019 to optimize parameters for soil reflectance composite (SRC) generation of multitemporal satellite imagery for SOC predictions. For this purpose, three spectral indices (PV + BLUE, PV + IR2, and NBR2) for SRC generation were implemented in the SCMaP chain. For all three indices a validation of the extracted bare soil dates with field observations and phenological information from the crop calendar showed a reliable extraction of bare soil dates. Due to the crops in the investigation area, spring and autumn months indicated the highest proportion of correctly selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed SRCs (indices and varying seasonal and temporal lengths) in combination with available legacy data. In comparison to a seasonal pre-selection of scenes (spring and autumn months) included in the SRC, the different indices showed a minor influence on SOC modeling. However, PV + BLUE performed best (R2: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). Furthermore, we compared the SOC model capabilities for different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). For PV + BLUE and PV + IR2, longer compositing lengths (from three to 15 years) resulted in an increase of the model accuracies and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-year compositing period is required for recurrent SOC predictions using Landsat data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助guilin采纳,获得20
1秒前
酷波er应助Cassie采纳,获得30
1秒前
RDH完成签到,获得积分10
1秒前
mengbo完成签到,获得积分20
1秒前
无情念双完成签到,获得积分10
1秒前
时玖关注了科研通微信公众号
2秒前
酷波er应助格子采纳,获得10
2秒前
哈哈完成签到,获得积分10
3秒前
刘显波完成签到,获得积分10
6秒前
kaka091完成签到,获得积分10
6秒前
7秒前
路宝发布了新的文献求助10
7秒前
禾+完成签到,获得积分10
7秒前
8秒前
申申完成签到,获得积分10
8秒前
9秒前
qian完成签到,获得积分20
9秒前
锦鲤完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
禾+发布了新的文献求助10
11秒前
小白完成签到,获得积分20
12秒前
刘JX完成签到,获得积分10
12秒前
geold发布了新的文献求助10
14秒前
传奇3应助Mm采纳,获得10
14秒前
bkagyin应助帕尼尼采纳,获得10
15秒前
研友_VZG7GZ应助圣斗士采纳,获得10
15秒前
D1fficulty完成签到,获得积分0
15秒前
欢欢完成签到,获得积分10
15秒前
15秒前
DDDD发布了新的文献求助10
15秒前
申申发布了新的文献求助10
16秒前
zzz完成签到,获得积分10
16秒前
Cassie发布了新的文献求助30
17秒前
17秒前
QY发布了新的文献求助20
17秒前
务实老虎完成签到,获得积分10
18秒前
Orange应助刘JX采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342