Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat

合成 环境科学 土壤碳 表土 背景(考古学) 土壤图 植被(病理学) 遥感 归一化差异植被指数 数字土壤制图 土壤科学 土工试验 水文学(农业) 土壤水分 气候变化 地质学 计算机科学 海洋学 图像(数学) 病理 古生物学 人工智能 岩土工程 医学
作者
Simone Zepp,Uta Heiden,Martin Bachmann,Markus Möller,Martin Wiesmeier,Bas van Wesemael
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 287-302 被引量:8
标识
DOI:10.1016/j.isprsjprs.2023.06.003
摘要

Soil Organic Carbon (SOC) is amongst others an indicator for soil degradation and soil health of croplands. Induced by recent policy initiatives, awareness for high resolution SOC maps and techniques to estimate changes is increasing. For area-wide mapping approaches with at least a field resolution, Earth Observation is a valuable data source to extract bare soil areas and to quantify SOC contents for these areas. In this context, compositing techniques of multi-temporal image archives are widely used to overcome the limitation of vegetation cover of fields during the overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are of particular importance: 1) the index for bare soil selection and 2) the length of the compositing period for recurrent analyses. In this study, we applied the Soil Composite Mapping Processor (SCMaP) to the full archive of Landsat data between 2005 and 2019 to optimize parameters for soil reflectance composite (SRC) generation of multitemporal satellite imagery for SOC predictions. For this purpose, three spectral indices (PV + BLUE, PV + IR2, and NBR2) for SRC generation were implemented in the SCMaP chain. For all three indices a validation of the extracted bare soil dates with field observations and phenological information from the crop calendar showed a reliable extraction of bare soil dates. Due to the crops in the investigation area, spring and autumn months indicated the highest proportion of correctly selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed SRCs (indices and varying seasonal and temporal lengths) in combination with available legacy data. In comparison to a seasonal pre-selection of scenes (spring and autumn months) included in the SRC, the different indices showed a minor influence on SOC modeling. However, PV + BLUE performed best (R2: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). Furthermore, we compared the SOC model capabilities for different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). For PV + BLUE and PV + IR2, longer compositing lengths (from three to 15 years) resulted in an increase of the model accuracies and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-year compositing period is required for recurrent SOC predictions using Landsat data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei发布了新的文献求助10
4秒前
alex12259完成签到 ,获得积分10
12秒前
Wang完成签到 ,获得积分20
16秒前
Nancy完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
20秒前
qianci2009完成签到,获得积分0
20秒前
对对对完成签到 ,获得积分10
24秒前
plz94完成签到 ,获得积分10
30秒前
wei完成签到,获得积分10
36秒前
艺术家完成签到 ,获得积分10
36秒前
葡萄小伊ovo完成签到 ,获得积分10
42秒前
JamesPei应助xp1911采纳,获得10
43秒前
结实凌瑶完成签到 ,获得积分10
43秒前
44秒前
美好灵寒完成签到 ,获得积分10
46秒前
fhw完成签到 ,获得积分10
47秒前
Sofia完成签到 ,获得积分0
48秒前
49秒前
Thi发布了新的文献求助10
56秒前
乐观的箭头完成签到,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
dejavu完成签到,获得积分10
1分钟前
大甜甜完成签到 ,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助xp1911采纳,获得10
1分钟前
1分钟前
滴滴完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SW冒险家完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
耍酷的指甲油完成签到 ,获得积分10
1分钟前
陈秋发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
GRATE完成签到 ,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得30
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013