Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat

合成 环境科学 土壤碳 表土 背景(考古学) 土壤图 植被(病理学) 遥感 归一化差异植被指数 数字土壤制图 土壤科学 土工试验 水文学(农业) 土壤水分 气候变化 地质学 计算机科学 岩土工程 人工智能 图像(数学) 医学 古生物学 海洋学 病理
作者
Simone Zepp,Uta Heiden,Martin Bachmann,Markus Möller,Martin Wiesmeier,Bas van Wesemael
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 287-302 被引量:8
标识
DOI:10.1016/j.isprsjprs.2023.06.003
摘要

Soil Organic Carbon (SOC) is amongst others an indicator for soil degradation and soil health of croplands. Induced by recent policy initiatives, awareness for high resolution SOC maps and techniques to estimate changes is increasing. For area-wide mapping approaches with at least a field resolution, Earth Observation is a valuable data source to extract bare soil areas and to quantify SOC contents for these areas. In this context, compositing techniques of multi-temporal image archives are widely used to overcome the limitation of vegetation cover of fields during the overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are of particular importance: 1) the index for bare soil selection and 2) the length of the compositing period for recurrent analyses. In this study, we applied the Soil Composite Mapping Processor (SCMaP) to the full archive of Landsat data between 2005 and 2019 to optimize parameters for soil reflectance composite (SRC) generation of multitemporal satellite imagery for SOC predictions. For this purpose, three spectral indices (PV + BLUE, PV + IR2, and NBR2) for SRC generation were implemented in the SCMaP chain. For all three indices a validation of the extracted bare soil dates with field observations and phenological information from the crop calendar showed a reliable extraction of bare soil dates. Due to the crops in the investigation area, spring and autumn months indicated the highest proportion of correctly selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed SRCs (indices and varying seasonal and temporal lengths) in combination with available legacy data. In comparison to a seasonal pre-selection of scenes (spring and autumn months) included in the SRC, the different indices showed a minor influence on SOC modeling. However, PV + BLUE performed best (R2: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). Furthermore, we compared the SOC model capabilities for different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). For PV + BLUE and PV + IR2, longer compositing lengths (from three to 15 years) resulted in an increase of the model accuracies and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-year compositing period is required for recurrent SOC predictions using Landsat data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
浮游应助ZYY采纳,获得10
2秒前
专门拖后腿完成签到 ,获得积分10
2秒前
微笑的天抒完成签到,获得积分10
2秒前
Lucas应助啾啾栖鸟过采纳,获得10
2秒前
上官若男应助感动书竹采纳,获得10
3秒前
桃子完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
汤汤完成签到 ,获得积分10
6秒前
凡凡发布了新的文献求助10
9秒前
姜宇麒发布了新的文献求助30
10秒前
ay发布了新的文献求助10
10秒前
FashionBoy应助yuji4268采纳,获得10
11秒前
12秒前
15秒前
小燕子发布了新的文献求助10
15秒前
15秒前
漾漾完成签到,获得积分10
18秒前
uniphoton完成签到,获得积分10
18秒前
研友_VZG7GZ应助Gleast采纳,获得10
18秒前
脑洞疼应助平淡的忆之采纳,获得10
19秒前
hahahahaha完成签到,获得积分10
20秒前
浮浮世世完成签到,获得积分10
20秒前
21秒前
奋斗的友儿完成签到,获得积分10
22秒前
科研通AI6应助autism采纳,获得10
22秒前
杀破狼发布了新的文献求助10
23秒前
现代半山完成签到 ,获得积分10
24秒前
24秒前
八九完成签到 ,获得积分10
25秒前
Yang应助大观天下采纳,获得10
25秒前
26秒前
万能图书馆应助Mortimer采纳,获得10
27秒前
安嫔完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499066
求助须知:如何正确求助?哪些是违规求助? 4596051
关于积分的说明 14451981
捐赠科研通 4529162
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465842
关于科研通互助平台的介绍 1438777