Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat

合成 环境科学 土壤碳 表土 背景(考古学) 土壤图 植被(病理学) 遥感 归一化差异植被指数 数字土壤制图 土壤科学 土工试验 水文学(农业) 土壤水分 气候变化 地质学 计算机科学 岩土工程 人工智能 图像(数学) 医学 古生物学 海洋学 病理
作者
Simone Zepp,Uta Heiden,Martin Bachmann,Markus Möller,Martin Wiesmeier,Bas van Wesemael
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 287-302 被引量:8
标识
DOI:10.1016/j.isprsjprs.2023.06.003
摘要

Soil Organic Carbon (SOC) is amongst others an indicator for soil degradation and soil health of croplands. Induced by recent policy initiatives, awareness for high resolution SOC maps and techniques to estimate changes is increasing. For area-wide mapping approaches with at least a field resolution, Earth Observation is a valuable data source to extract bare soil areas and to quantify SOC contents for these areas. In this context, compositing techniques of multi-temporal image archives are widely used to overcome the limitation of vegetation cover of fields during the overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are of particular importance: 1) the index for bare soil selection and 2) the length of the compositing period for recurrent analyses. In this study, we applied the Soil Composite Mapping Processor (SCMaP) to the full archive of Landsat data between 2005 and 2019 to optimize parameters for soil reflectance composite (SRC) generation of multitemporal satellite imagery for SOC predictions. For this purpose, three spectral indices (PV + BLUE, PV + IR2, and NBR2) for SRC generation were implemented in the SCMaP chain. For all three indices a validation of the extracted bare soil dates with field observations and phenological information from the crop calendar showed a reliable extraction of bare soil dates. Due to the crops in the investigation area, spring and autumn months indicated the highest proportion of correctly selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed SRCs (indices and varying seasonal and temporal lengths) in combination with available legacy data. In comparison to a seasonal pre-selection of scenes (spring and autumn months) included in the SRC, the different indices showed a minor influence on SOC modeling. However, PV + BLUE performed best (R2: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). Furthermore, we compared the SOC model capabilities for different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). For PV + BLUE and PV + IR2, longer compositing lengths (from three to 15 years) resulted in an increase of the model accuracies and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-year compositing period is required for recurrent SOC predictions using Landsat data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aibing完成签到,获得积分10
1秒前
KrisTina发布了新的文献求助10
1秒前
宇文老九发布了新的文献求助100
1秒前
随心发布了新的文献求助10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
学术混子完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
聪明的安珊关注了科研通微信公众号
5秒前
jhw发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
lindollar发布了新的文献求助10
7秒前
幸福墨镜发布了新的文献求助10
7秒前
科研通AI6.1应助夕荀采纳,获得10
7秒前
old赵发布了新的文献求助10
8秒前
丘比特应助之昂采纳,获得10
8秒前
田様应助Aiuuu采纳,获得10
8秒前
qwert发布了新的文献求助10
8秒前
lxy发布了新的文献求助30
9秒前
Qinpy发布了新的文献求助10
10秒前
orixero应助YY采纳,获得10
10秒前
名丿完成签到,获得积分10
10秒前
龙海完成签到 ,获得积分10
10秒前
11秒前
11秒前
波斯菊完成签到,获得积分20
12秒前
13秒前
13秒前
Owen应助酒洲采纳,获得10
14秒前
歪歪完成签到,获得积分10
15秒前
一期一会完成签到,获得积分10
15秒前
xzy998发布了新的文献求助50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784182
求助须知:如何正确求助?哪些是违规求助? 5681297
关于积分的说明 15463418
捐赠科研通 4913491
什么是DOI,文献DOI怎么找? 2644676
邀请新用户注册赠送积分活动 1592532
关于科研通互助平台的介绍 1547112