A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem With Crane Transportation and Setup Times

计算机科学 强化学习 作业车间调度 加权 调度(生产过程) 数学优化 人工智能 地铁列车时刻表 数学 医学 放射科 操作系统
作者
Yu Du,Junqing Li,Chengdong Li,Peiyong Duan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5695-5709 被引量:52
标识
DOI:10.1109/tnnls.2022.3208942
摘要

Flexible job shop scheduling problem (FJSP) has attracted research interests as it can significantly improve the energy, cost, and time efficiency of production. As one type of reinforcement learning, deep Q-network (DQN) has been applied to solve numerous realistic optimization problems. In this study, a DQN model is proposed to solve a multiobjective FJSP with crane transportation and setup times (FJSP-CS). Two objectives, i.e., makespan and total energy consumption, are optimized simultaneously based on weighting approach. To better reflect the problem realities, eight different crane transportation stages and three typical machine states including processing, setup, and standby are investigated. Considering the complexity of FJSP-CS, an identification rule is designed to organize the crane transportation in solution decoding. As for the DQN model, 12 state features and seven actions are designed to describe the features in the scheduling process. A novel structure is applied in the DQN topology, saving the calculation resources and improving the performance. In DQN training, double deep Q-network technique and soft target weight update strategy are used. In addition, three reported improvement strategies are adopted to enhance the solution qualities by adjusting scheduling assignments. Extensive computational tests and comparisons demonstrate the effectiveness and advantages of the proposed method in solving FJSP-CS, where the DQN can choose appropriate dispatching rules at various scheduling situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助白华苍松采纳,获得10
1秒前
1秒前
1秒前
寒子川发布了新的文献求助10
2秒前
香蕉觅云应助云风采纳,获得10
2秒前
C1发布了新的文献求助10
3秒前
Owen应助22采纳,获得10
4秒前
4秒前
打打应助黄淮二傻采纳,获得10
4秒前
5秒前
6秒前
6秒前
corazon发布了新的文献求助30
6秒前
6秒前
Jay01发布了新的文献求助10
7秒前
8秒前
宝儿姐发布了新的文献求助10
8秒前
9秒前
9秒前
lllllll完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
快乐小蕊发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
lllllll发布了新的文献求助10
14秒前
田様应助hbzyydx46采纳,获得20
14秒前
零零发布了新的文献求助10
15秒前
一一一发布了新的文献求助10
17秒前
香蕉觅云应助xiaohang采纳,获得10
18秒前
18秒前
18秒前
hr发布了新的文献求助10
19秒前
19秒前
20秒前
wll给wll的求助进行了留言
20秒前
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943