An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites

材料科学 纳米复合材料 环氧树脂 石墨烯 阻燃剂 复合材料 氧化物 氧化铁 导电的 纳米技术 冶金
作者
Qiang Chen,Lei Liu,Anlin Zhang,Wenduo Wang,Zhengzhou Wang,Jianzhong Zhang,Jiabing Feng,Siqi Huo,Xuesen Zeng,Pingan Song
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140424-140424 被引量:91
标识
DOI:10.1016/j.cej.2022.140424
摘要

• Multifunctional nanohybrid (FeHP@GO) has been prepared via a facile and scalable approach. • Adding 1 wt% FeHP@GO significantly improves fire retardancy and mechanical properties of EP. • The EP/FeHP@GO sample shows superior flame retardancy and mechanical property to previous work. • The thermal conductivity of EP/FeHP@GO nanocomposites are also dramatically improved. The epoxy (EP) resin is being intensively applied in electronics packaging, the 5th generation communication technology (5G) and composite tanks for pressurized hydrogen fuel storage. For these applications, to date it has remained a grand challenge for EP to achieve a demanding property portfolio, e.g., the combination of satisfactory fire retardancy, high thermal conductivity (λ) and excellent mechanical properties. Herein, we report an iron phenylphosphinate-functionalized graphene oxide (FeHP@GO) nanohybrid by a facile yet scalable in-situ self-assembly method. Compared to the virgin EP, the EP nanocomposite with 2.0wt% of FeHP@GO shows 42.5% improvement in the limiting oxygen index (LOI), 46.2% and 23.5% reductions in the peak heat release rate (PHRR) and total heat release rate (THR), respectively, and a desired UL-94 V-0 rating. In addition, the resultant EP nanocomposite also exhibits improved tensile strength and λ (increased by 32.6% and 96.0%, respectively) relative to virgin EP. Such desirable integrated performances outperform those of the previously-reported EP counterparts, because of the multiple synergistic effects between FeHP and GO. This work provides an innovative strategy for the design of multifunctional EP nanocomposites, which holds the great promise for many industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大方嵩采纳,获得10
1秒前
英俊的铭应助大方嵩采纳,获得10
1秒前
李还好完成签到,获得积分10
2秒前
满意的柏柳完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
buno应助88采纳,获得10
5秒前
6秒前
三千世界完成签到,获得积分10
6秒前
6秒前
愉快的访旋完成签到,获得积分10
7秒前
Alpha完成签到,获得积分10
8秒前
大大发布了新的文献求助30
8秒前
翠翠发布了新的文献求助10
9秒前
半山发布了新的文献求助10
10秒前
10秒前
天天快乐应助CO2采纳,获得10
10秒前
隐形曼青应助junzilan采纳,获得10
11秒前
Dksido发布了新的文献求助10
11秒前
12秒前
思源应助卓哥采纳,获得10
12秒前
mysci完成签到,获得积分10
15秒前
16秒前
Quzhengkai发布了新的文献求助10
17秒前
17秒前
18秒前
落寞晓灵完成签到,获得积分10
18秒前
ORAzzz应助翠翠采纳,获得20
19秒前
zoe完成签到,获得积分10
19秒前
习习应助学术小白采纳,获得10
19秒前
20秒前
21秒前
tianny关注了科研通微信公众号
22秒前
22秒前
CO2发布了新的文献求助10
22秒前
桐桐应助zhangscience采纳,获得10
23秒前
求助发布了新的文献求助10
24秒前
buno应助zoe采纳,获得10
25秒前
junzilan发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808