材料科学
阳极
纳米颗粒
密度泛函理论
动力学
化学工程
纳米技术
电极
物理化学
计算化学
量子力学
物理
工程类
化学
作者
Rongxiang Hu,Wei Wang,Xin Cao,Chengjie Lu,Yicheng Wei,Long Pan,ZhengMing Sun
标识
DOI:10.1002/aenm.202203118
摘要
Abstract The prosperous deployments of renewable energy have stimulated the looming exploration of K‐ion batteries (KIBs) for grid‐scale energy storage because of their high energy density and low cost. However, lacking advanced anode materials with high theoretical capacity, fast K + storage kinetics, and eco‐friendliness discourages KIB development. Here, for the first time, ZnTe as an advanced KIB anode material with a conversion reaction mechanism ( y ZnTe + x K + + x e − → y Zn + K x Te y ) is demonstrated. The ZnTe nanoparticles are uniformly dispersed in a carbon matrix using metal–organic frameworks as starting materials, which are subsequently anchored on Ti 3 C 2 T x MXene nanosheets, forming elaborate ZnTe@C/Ti 3 C 2 T x (ZCT) nanohybrids. Various theoretical modeling and postmortem examinations reveal the synergistic integrations between carbon and Ti 3 C 2 T x . Compositionally, they regulate the electronic structure of ZnTe, providing fast K + adsorption kinetics. Morphologically, they construct a 0D/2D dual confinement, addressing the volume change of ZnTe upon cycling. Therefore, the ZCT exhibits a high capacity (408.0 mA h g −1 at 0.1 A g −1 ) and excellent long‐term cyclability (230.2 mA h g −1 at 1.0 A g −1 after 3500 cycles), outperforming other reported transition‐metal‐chalcogenides. Significantly, the ZCT‐based full cells achieve a high energy density of 110.3 Wh Kg −1 , making ZCT promising for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI