Energy Mechanism of Atmospheric Boundary Layer Development Over the Tibetan Plateau

显热 行星边界层 夹带(生物音乐学) 大气科学 环境科学 边界层 混合层 热流密度 潜热 高原(数学) 能量通量 气候学 气象学 地质学 传热 地理 机械 物理 数学分析 数学 天文 节奏 声学
作者
Cailing Zhao,Xianhong Meng,Lin Zhao,Jianping Guo,Yueqing Li,Huizhi Liu,Zhaoguo Li,Bo Han,Shihua Lyu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (6) 被引量:2
标识
DOI:10.1029/2022jd037332
摘要

Abstract The distinct thermodynamic characteristics of the atmospheric boundary layer (ABL) over the Tibetan Plateau (TP) significantly affect regional and global climate. It is well recognized that the ABL depth over the western TP can exceed 4,000 m. However, the energy mechanism of its development is less understood. In this study, the energy mechanism of ABL development of three sites on the TP was analyzed using intensive sounding observation data from the Third Tibetan Plateau Atmospheric Scientific Experiment. The results showed that the surface sensible heat flux, boundary layer entrainment energy, and heat flux at the top of the ABL affected ABL growth. The ABL depths at the Shiquanhe and Gerze stations were relatively higher, with a mean height of approximately 2,500 m above ground level (agl) and a maximum of 4,500 m agl. The ABL grew to its highest height at 20:00 Beijing Time, and its residual layer was also deep. The ABL depths at the Jiulong station were mainly below 1,200 m agl. The accumulated surface sensible heat flux (62.5%) and residual layer entrainment energy (9.7%) significantly affected the ABL development at Shiquanhe station. In addition to the accumulated sensible heat flux and residual layer entrainment energy, the latent heat flux at the top of the boundary layer also significantly impacted the ABL development at Gerze station. The energy required for the ABL growth at Jiulong station was also the smallest, owing to its lowest depth here. The accumulated sensible heat flux played the most crucial role in boundary layer development over the TP. The influences of wind shear on ABL growth cannot be ignored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
1秒前
JamesPei应助科研小小小白采纳,获得10
1秒前
1秒前
yaqin@9909完成签到,获得积分10
1秒前
嗨JL完成签到,获得积分10
1秒前
帅玉玉发布了新的文献求助10
1秒前
鳗鱼冰薇完成签到 ,获得积分10
3秒前
tanjianxin发布了新的文献求助10
3秒前
4秒前
霸王龙完成签到,获得积分10
4秒前
4秒前
4秒前
细心映寒发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
5秒前
5秒前
安静的雨完成签到,获得积分10
5秒前
6秒前
6秒前
liu完成签到,获得积分10
6秒前
6秒前
神麒小雪完成签到,获得积分10
6秒前
苹果酸奶发布了新的文献求助10
6秒前
7秒前
粥粥完成签到 ,获得积分10
7秒前
小离发布了新的文献求助30
8秒前
9秒前
nk完成签到 ,获得积分10
9秒前
kkk完成签到 ,获得积分10
9秒前
韭菜发布了新的文献求助10
9秒前
KSGGS发布了新的文献求助30
10秒前
李爱国应助tanjianxin采纳,获得10
10秒前
10秒前
10秒前
柚子发布了新的文献求助10
11秒前
11秒前
11秒前
SciGPT应助小可采纳,获得10
11秒前
12秒前
12秒前
Akim应助若狂采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759