已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy

医学 放射治疗 肺癌 核医学 试验装置 放射科 医学物理学 人工智能 内科学 计算机科学
作者
Zhen Zhang,Zhixiang Wang,Tianchen Luo,Meng Yan,André Dekker,Dirk De Ruysscher,Alberto Traverso,Leonard Wee,Lujun Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:182: 109581-109581 被引量:14
标识
DOI:10.1016/j.radonc.2023.109581
摘要

To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy.CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed.The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP.A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周完成签到 ,获得积分10
2秒前
3秒前
lllwww完成签到 ,获得积分10
3秒前
4秒前
Ranrunn完成签到 ,获得积分10
4秒前
4秒前
levi发布了新的文献求助20
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
sun发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
高贵的子默完成签到,获得积分10
7秒前
00发布了新的文献求助10
8秒前
zz走野发布了新的文献求助10
9秒前
澄碧千顷完成签到 ,获得积分10
12秒前
13秒前
小瓶盖完成签到 ,获得积分10
14秒前
15秒前
奔跑西木完成签到 ,获得积分10
17秒前
gudaobo完成签到 ,获得积分10
19秒前
胡一刀完成签到,获得积分10
19秒前
22秒前
www268完成签到 ,获得积分10
23秒前
00完成签到,获得积分20
23秒前
木又完成签到 ,获得积分10
24秒前
方方别方完成签到 ,获得积分10
25秒前
27秒前
27秒前
28秒前
28秒前
29秒前
科研通AI2S应助zz走野采纳,获得10
31秒前
可爱航发布了新的文献求助80
32秒前
青柠发布了新的文献求助10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261438
求助须知:如何正确求助?哪些是违规求助? 2902237
关于积分的说明 8319436
捐赠科研通 2572152
什么是DOI,文献DOI怎么找? 1397417
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223