Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy

医学 放射治疗 肺癌 核医学 试验装置 放射科 医学物理学 人工智能 内科学 计算机科学
作者
Zhen Zhang,Zhixiang Wang,Tianchen Luo,Meng Yan,André Dekker,Dirk De Ruysscher,Alberto Traverso,Leonard Wee,Lujun Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:182: 109581-109581 被引量:15
标识
DOI:10.1016/j.radonc.2023.109581
摘要

To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy.CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed.The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP.A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助LL采纳,获得10
1秒前
Iven发布了新的文献求助10
2秒前
2秒前
4秒前
wwb完成签到,获得积分10
5秒前
5秒前
顾矜应助新野采纳,获得10
5秒前
嘎嘎完成签到 ,获得积分20
5秒前
搜集达人应助balabala采纳,获得10
5秒前
迅速的尔琴完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
CodeCraft应助邓代容采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助TT采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
内向平萱发布了新的文献求助10
8秒前
9秒前
DKH发布了新的文献求助10
9秒前
明亮无颜完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
暴躁的奇异果完成签到,获得积分10
10秒前
星星完成签到,获得积分10
10秒前
10秒前
Hello应助ymbb采纳,获得10
11秒前
11秒前
11秒前
初之发布了新的文献求助10
12秒前
12秒前
shuyi完成签到 ,获得积分10
12秒前
Sui发布了新的文献求助10
12秒前
西柚完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
CSII完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771