Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy

医学 放射治疗 肺癌 核医学 试验装置 放射科 医学物理学 人工智能 内科学 计算机科学
作者
Zhen Zhang,Zhixiang Wang,Tianchen Luo,Meng Yan,André Dekker,Dirk De Ruysscher,Alberto Traverso,Leonard Wee,Lujun Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:182: 109581-109581 被引量:17
标识
DOI:10.1016/j.radonc.2023.109581
摘要

To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy.CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed.The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP.A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助haorui采纳,获得10
刚刚
刚刚
开放怀亦发布了新的文献求助10
刚刚
Zhuhaimao发布了新的文献求助10
刚刚
xiaohua关注了科研通微信公众号
刚刚
自觉灵凡完成签到 ,获得积分10
刚刚
亦安完成签到,获得积分10
1秒前
bingbing发布了新的文献求助10
1秒前
王AA完成签到,获得积分10
1秒前
wdy111举报阿斯师大求助涉嫌违规
1秒前
2秒前
2秒前
pqy发布了新的文献求助10
2秒前
无眠宇宙发布了新的文献求助20
2秒前
CodeCraft应助包容的琦采纳,获得10
3秒前
怕孤独的修杰完成签到 ,获得积分10
3秒前
超级无敌奥特大王完成签到,获得积分10
3秒前
3秒前
missylucky完成签到,获得积分10
3秒前
汉堡包应助神勇语堂采纳,获得10
4秒前
4秒前
yookia应助李霞采纳,获得10
5秒前
Zhuhaimao完成签到,获得积分20
5秒前
爆米花应助王AA采纳,获得10
6秒前
新新完成签到 ,获得积分10
6秒前
我爱乒乓球完成签到,获得积分10
6秒前
彭于晏应助ATOM采纳,获得10
6秒前
小新发布了新的文献求助10
6秒前
6秒前
开放怀亦完成签到,获得积分10
7秒前
zzzzz完成签到,获得积分10
7秒前
7秒前
搜集达人应助小琪猪采纳,获得10
7秒前
颖火虫2588完成签到,获得积分10
8秒前
紧张的以山完成签到,获得积分10
8秒前
顺利紫山发布了新的文献求助10
9秒前
xiaose完成签到,获得积分10
9秒前
9秒前
鲸鲸发布了新的文献求助10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635