N-Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations

材料科学 阳极 电解质 离子电导率 聚合物 导电体 化学工程 离子键合 电化学 复合材料 电极 离子 光电子学 有机化学 化学 物理化学 工程类
作者
Zhimin Sun,Jiadeng Zhu,Chen Yang,Qibao Xie,Yan Jiang,Kaixiang Wang,Mengjin Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (10): 12946-12956 被引量:5
标识
DOI:10.1021/acsami.2c19587
摘要

The dilemma of employing high-capacity battery materials and maintaining the electrodes' electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer's mechanical properties and the electrolyte's infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g-1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g-1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Ashley采纳,获得10
1秒前
荼柒完成签到,获得积分10
1秒前
Crisp发布了新的文献求助10
1秒前
2秒前
2秒前
斯文败类应助狂野大雄鹰采纳,获得10
3秒前
温暖的秋荷完成签到,获得积分10
4秒前
共享精神应助孙宏采纳,获得10
4秒前
4秒前
5秒前
艳子发布了新的文献求助10
5秒前
5秒前
CodeCraft应助知行采纳,获得10
6秒前
香蕉觅云应助Jerry采纳,获得10
6秒前
7秒前
不配.应助科研通管家采纳,获得20
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得30
8秒前
爆米花应助科研通管家采纳,获得30
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
宫然发布了新的文献求助10
9秒前
洁净汝燕发布了新的文献求助10
9秒前
Jasper应助阔达荣轩采纳,获得10
10秒前
11秒前
why发布了新的文献求助30
11秒前
11秒前
13秒前
悦耳从彤完成签到,获得积分10
13秒前
科研通AI2S应助老仙翁采纳,获得10
14秒前
Singularity应助圆圆的波仔采纳,获得10
14秒前
14秒前
高丽娜发布了新的文献求助10
15秒前
15秒前
LTT完成签到,获得积分20
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260