亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based cross-subject emotion recognition using multi-source domain transfer learning

计算机科学 学习迁移 人工智能 脑电图 二元分类 模式识别(心理学) 自编码 一般化 代表(政治) 领域(数学分析) 机器学习 情绪分类 人工神经网络 支持向量机 数学 法学 精神科 数学分析 政治 政治学 心理学
作者
Jie Quan,Ying Li,Lingyue Wang,Renjie He,Shuo Yang,Lei Guo
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104741-104741 被引量:25
标识
DOI:10.1016/j.bspc.2023.104741
摘要

Emotion recognition based on electroencephalogram (EEG) has received extensive attention due to its advantages of being objective and not being controlled by subjective consciousness. However, inter-individual differences lead to insufficient generalization of the model on cross-subject recognition tasks. To solve this problem, a cross-subject emotional EEG classification algorithm based on multi-source domain selection and subdomain adaptation is proposed in this paper. We firstly design a multi-representation variational autoencoder (MR-VAE) to automatically extract emotion related features from multi-channel EEG to obtain a consistent EEG representation with as little prior knowledge as possible. Then, a multi-source domain selection algorithm is proposed to select the existing subjects' EEG data that is closest to the target data distribution in the global distribution and sub-domain distribution, thereby improving the performance of the transfer learning model on the target subject. In this paper, we use a small amount of annotated target data to achieve knowledge transfer and improve the classification accuracy of the model on the target subject as much as possible, which has certain significance in clinical research. The proposed method achieves an average classification accuracy of 92.83% and 79.30% in our experiment on two public datasets SEED and SEED-IV, respectively, which are 26.37% and 22.80% higher than the baseline non-transfer learning method, respectively. Furthermore, we validate the proposed method on other two commonly used public datasets DEAP and DREAMER, which establish SOTA results on the binary classification task of the DEAP dataset. It also achieves comparable accuracy to several transfer learning based methods on the DREAMER dataset. The detailed recognition results on DEAP and DREAMER are in Appendix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别具一格完成签到 ,获得积分10
9秒前
大个应助huodian4采纳,获得10
11秒前
1分钟前
1分钟前
1分钟前
科研通AI2S应助迷人尔蓝采纳,获得10
2分钟前
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
牟白容发布了新的文献求助10
3分钟前
huodian4发布了新的文献求助10
3分钟前
牟白容完成签到,获得积分10
3分钟前
鸮纛完成签到,获得积分10
3分钟前
huodian4完成签到,获得积分10
3分钟前
PEITON发布了新的文献求助10
4分钟前
充电宝应助小鳄鱼夸夸采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
小鳄鱼夸夸完成签到,获得积分10
5分钟前
Zrysaa完成签到,获得积分10
5分钟前
Alicia完成签到 ,获得积分10
5分钟前
5分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
6分钟前
SDNUDRUG完成签到,获得积分10
7分钟前
7分钟前
7分钟前
fev123完成签到,获得积分10
8分钟前
俞慕儿完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
fuueer完成签到 ,获得积分10
9分钟前
nadia完成签到,获得积分10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298727
求助须知:如何正确求助?哪些是违规求助? 2933733
关于积分的说明 8464755
捐赠科研通 2606845
什么是DOI,文献DOI怎么找? 1423451
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645168