A 5‐year survival status prognosis of nonmetastatic cervical cancer patients through machine learning algorithms

Lasso(编程语言) 随机森林 支持向量机 逻辑回归 接收机工作特性 队列 机器学习 特征选择 医学 人工智能 预测建模 算法 统计 计算机科学 内科学 数学 万维网
作者
Wenke Yu,Yanwei Lu,Huafeng Shou,Hong’en Xu,Lei Shi,Xiao Geng,Tao Song
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (6): 6867-6876 被引量:10
标识
DOI:10.1002/cam4.5477
摘要

Abstract Background Prediction models with high accuracy rates for nonmetastatic cervical cancer (CC) patients are limited. This study aimed to construct and compare predictive models on the basis of machine learning (ML) algorithms for predicting the 5‐year survival status of CC patients through using the Surveillance, Epidemiology, and End Results public database of the National Cancer Institute. Methods The data registered from 2004 to 2016 were extracted and randomly divided into training and validation cohorts (8:2). The least absolute shrinkage and selection operator (LASSO) regression was employed to identify significant factors. Then, four predictive models were constructed, including logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The predictive models were evaluated and compared using Receiver‐operating characteristics with areas under the curves (AUCs) and decision curve analysis (DCA), respectively. Results A total of 13,802 patients were involved and classified into training ( N = 11,041) and validation ( N = 2761) cohorts. By using the LASSO regression method, seven factors were identified. In the training cohort, the XGBoost model showed the best performance (AUC = 0.8400) compared to the other three models (all p < 0.05 by Delong's test). In the validation cohort, the XGBoost model also demonstrated a superior prediction ability (AUC = 0.8365) than LR and SVM models (both p < 0.05 by Delong's test), although the difference was not statistically significant between the XGBoost and the RF models ( p = 0.4251 by Delong's test). Based on the DCA results, the XGBoost model was also superior, and feature importance analysis indicated that the tumor stage was the most important variable among the seven factors. Conclusions The XGBoost model proved to be an effective algorithm with better prediction abilities. This model is proposed to support better decision‐making for nonmetastatic CC patients in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助妙松采纳,获得10
刚刚
akmdh完成签到,获得积分10
刚刚
舒心的秋荷完成签到 ,获得积分20
1秒前
1秒前
堪怀发布了新的文献求助30
1秒前
2秒前
2秒前
干净的问寒完成签到,获得积分10
2秒前
得灵梦发布了新的文献求助10
2秒前
2秒前
彭彭完成签到,获得积分10
3秒前
JayWu完成签到,获得积分10
3秒前
Lazarus_x完成签到,获得积分10
3秒前
豆沙包完成签到,获得积分10
4秒前
4秒前
科研通AI5应助yym0705采纳,获得10
5秒前
渡江渡发布了新的文献求助10
5秒前
5秒前
yydhda发布了新的文献求助30
5秒前
悲惨雪糕W完成签到,获得积分10
6秒前
豆沙包发布了新的文献求助10
6秒前
7秒前
7秒前
无情修杰完成签到 ,获得积分10
8秒前
8秒前
大鹏发布了新的文献求助10
8秒前
zhangdan发布了新的文献求助20
9秒前
Hmbb发布了新的文献求助30
9秒前
mmol完成签到,获得积分10
9秒前
wwl完成签到,获得积分10
9秒前
专注的问筠完成签到,获得积分10
10秒前
10秒前
积极墨镜完成签到,获得积分10
10秒前
大个应助不爱吃鱼的猫采纳,获得10
10秒前
cdercder应助momo采纳,获得10
11秒前
11秒前
正直画笔完成签到 ,获得积分10
11秒前
曾经的灵完成签到,获得积分10
11秒前
长情青烟发布了新的文献求助10
11秒前
渡江渡完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006